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1.0 OBJECTIVE

The research performed under this contract is directed toward an under-
standing of plasma processes in boundary and electrode regions. The
aim is to develop a self-consistent theory combining electron and ion kinet-
ics in the presence of strong field and density gradients with the boundary
layer equations of gasdynamics. The present study has direct application
to problems in high-pressure, flowing gas discharges and in MHD power

generators.

In electric discharges, the development of arcs and nonuniform current
distributions begins at the electrodes. The interaction between a thermal

boundary layer and the space-charge sheath adjacent to electrodes and other

solid boundaries is therefore critical to the determination of electric discharge

stability and uniformity: If an understanding of the basic processesin these
regions can be achieved, it may be possible to extend the useful operating
range of discharge-pumped devices to higher power densities and longer

pulses.

In an MHD generator, the internal voltage losses across the boundary
layer and sheath limit the energy conversion efficiency. Current con-
strictions on the electrodes can cause surface deterioration, An under-
standing of the collisional sheath and boundary layer problems will lead

to improved system designs.
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2.0 SUMMARY

In the first quarter, a literature search was performed to identify relevant
theories and to evaluate their applicability to the present study. The important
processes which must be included in a self-consistent model of the plasma
sheath were identified, The Boltzmann equation for electrons in a nonuniform

field was derived in a form amenable to numerical solution.

In the second quarter, a computer program was developed to model the electron
kinetics in a highly nonuniform electric field. Cases were run in several

gases using a constant field for comparison with previous Monte Carlo solu-
tions. The nonequilibrium character of the electron energy distribution was
clearly demonstrated, thus pointing out the limitations of earlier sheath
models. The equations for electric field and ion kinetics were formulated for

use in a fully self-consistent solution of the cathode sheath.

In the third quarter, the evolution of electron energy distributions in the

cathode fall and negative glow was examined by assuming a linearly falling
electric field followed by a zero-field drift region. The results agree well
with experimental distributions measured at the edge of the cathode fall. {
Recombination and attachment were included in the model but only had a sig- |
nificant effect in the negative glow. Analytic solutions to the Boltzmann
equation were derived for a specific choice of cross sections in order to

test some of the angular approximations used in the code.

In the fourth quarter, cathode sheath characteristics were derived using the
linear field approximation., It was found that the usual scaling laws apply

in terms of the reduced pressure at the cathode surface. Gas heating in the
sheath was examined and the temperature distribution was calculated. For

subsonic flows, the principal cooling mechanism is conduction to the cathode




surface. In this regime, the boundary layer problem can be separated from
the sheath problem. A computer program for the solution of the boundary layer $

equations including gas heating was described.

In the last quarter, numerical calculations of the temperature distribution

in the cathode sheath and boundary layer were presented. The temperature
rise across the sheath was shown to increase linearly with pressure. An
analysis was made of the thermal stability at the cathode surface. A critical
current density was found at which the surface temperature and electric

field increase until arcing occurs. This event can be forstalled by cooling
the electrode and by the use of a buffer gas with high thermal conductivity,
Auxiliary ionization and field tailoring, which are designed to eliminate ion-
ization instabilities and maintain constant E/N in the positive column, affect
the sheath only through the imposed local current density and do not sig-

nificantly alter sheath characteristics.

. R v NN i N AR T N A




-

e

5

3.0 INTRODUCTION

The problem as stated in Section 1.0 is to develop a self-consistent theory
of plasma processes in boundary and electrode regions, The approach taken
under this contract consists of two basic parts: First, a refinement of the
existing theories of the sheath and cathode fall regions to include the effects
of field and density gradients and the anisotropy of the electron velocity dis-
tribution; then, a coupling to the gas dynamic equations with transverse flow
to study the growth of boundary layer thickness and the effect of convective
cooling on sheath structure. The basic processes which must be included in

this model are described below.

A plasma consists of electrons, ions, and neutral particles in the presence
of electric and/or magnetic fields. If the gas is weakly ionized, and all
collisions are binary encounters, the particles are completely described by
distribution functions which satisfy a Boltzmann equation with the appropriate
Lorentz force and collision term. In most practical cases, the distribution
function for neutral particles is close to the equilibrium-Maxwellian form,

so that moment equations can be used to describe the local gas properties

in terms of an average density, flow velocity and temperature, For a sheath
imbedded in a turbulent boundary layer, the effects of viscosity and thermal

conductivity must be included along with a source term for gas heating.

Because of their mass, the ions can also be described by moment equations,
with the inclusion of relevant production and loss processes, momentum and
energy transfer to neutrals, and Joule heating, However, due to their greater
mobility and resulting nonequilibrium behavior, the electrons must be dealt
with in terms of the full space and velocity distribution function. Electrons
play a dominant role in determining sheath structure. Consequently, their
accurate description is considered an essential part of the present study,

The electron velocity distribution must be obtained from a numerical solution
of the collisional Boltzmann equation without the usual angular approximation.

The treatment of electron and ion kinetics must be self-consistent with the




solution of Poisson's equation for the electric field. In the presence of an
applied magnetic field, additional field equations are required along with a

modified Lorentz force term.,

3.1 Literature Search

A literature search was conducted covering the areas of nonequilibrium
electron kinetics and collision-dominated sheaths. The list of references
presented is meant to be more representative than exhaustive. Preference
was given to the most recent papers and the latest work of a given author.
"’ Studies of the turbulent boundary layer which did not treat electric sheaths
were not included. The considerable research on electric probe theory
was also not considered immediately applicable. Only one paper was

E foundl which analyzed the interaction between sheath and boundary layer.

The results of that work will be incorporated into the present study.

The term "nonequilibrium electron kinetics'' refers to either spatial or

temporal nonequilibrium as occurs, for example, in the Townsend dis-
charge and in streamer development, respectively. In either case, the
electron energy distribution is not completely specified by the local elec-

tric field and gas density but must be considered in the full context of

{ spatial or temporal growth. Studies of electron kinetics can be broken

5,10,12,13, 15; 17
into two major groups, 1) those based on Monte Carlo simulation.

and 2) those based on analysis of the Boltzmann equa.tion‘.t' Sk 0 A
They include several detailed comparisons of the two methods. i Most of
the calculations were based on a uniform electric field, except for one assuming
a loga rithmic9 and one a linear10 dependence. There were only two papers
involving the self-consistent treatment of nonequilibrium electron kinetics

with the field equations. One was a Monte Carlo simulation of the temporal
development of electron avalanches or streamers. = The other was a study

of a low-pressure plasma diode using the Krook model to describe the col-

14 " . 4 g
lision term in the Boltzmann equation. These theories will be discussed in

the following section. J
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The subject of collision-dominated sheaths was broadened to include other
situations involving the interaction between a plasma and space-charge-
induced fields. The papers in this category can be divided roughly into
two groups, l) analyses of steady-state sheaths“’ 20, 24, 26_30and 2)simula-

19,22,25 21,23

tions of discharge initiation and glow-to-arc transitions. Both prob-

lems involve the same system of equations and there is little difference in the

general method of solution. Only the assumptions made and the processes included
differentiate these studies. All treatments are based on the use of moment
equations to describe the electrons and ions. Some consider gas heating
effect:s-l21 . Others include an external ionization source.zo’ 24,271 pfost models
deal with only one spatial dimension (except References 18, 21, and 23,which
consider two). THe applicability of these approaches to the present study will

be addressed in the following section.

3.2 Evaluation of Appropriate Theories

hababit ol e s L

The theories identified in the literature search and listed in Section 3.4
will now be evaluated on the basis of their potential in meeting the require-

ments of the present study. The requirements are as follows:

a) The system of equations must include as a minimu.y, the
Poisson equation for the electric field, the collisicnal Boltz-

' mann equation for electrons, the moment equations for ions

and the boundary layer equations for the neutral gas. The

kinetic equations for electrons and ions may be replaced by

Monte Carlo simulation with an appropriate collision model.

f : b) The theorymust consider the proper boundary conditions at

‘ the wall-sheath interface and at the sheath-plasma interface.

The sheath-plasma boundary conditions may be omitted

! if the calculations are continued to the opposite wall or elec-

trode,




c) The solution must be obtainable in two spatial dimensions

with full, self-consistent coupling between all equations.

d) The treatment of electron kinetics must utilize realistic
cross sections, including angular dependence, a source
term for external ionization and loss terms for attach-

ment and recombination,

e) The equations for ion kinetics must include the inertia
term, charge exchange, and the same production-loss

terms as for electrons.

f) The boundary layer equations must consider gas heating

in the sheath, as well as heat conduction to the wall.

g) Since the computer code is to be used in a parametric
mapping of sheath characteristics over quite a broad
parameter space, it must be reasonably economical in

the use of central processor memory and time.

First, a comparison will be made between Boltzmann and Monte Carlo
techniques. Although the two approaches are mathematically equivalent,
there are important economic and scientific differences. Economically,
the Monte Carlo methods are very costly as far as computer time is con-
cerned. No quantitative comparisons were found, but all authors who
tried both, found the Monte Carlo simulation to be much more time con-
suming than a Boltzmann analysis. Scientifically, the Boltzmann approach
gives a greater insight into the physics of a particlar situation. Approx-
imate solutions can be found analytically which illustrate the dependence
on relevant parameters, and the sensitivity to changes in input data can
be more easily determined. Also, exact analytic solutions in certain
situations provide a benchmark for numerical results. The principal
advantage of the Monte Carlo method is the ease with which it can be form-

ulated into a computer code.

B o
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Recent solutions of the Boltzmann equation have dealt with the problem of
electron swarm motion in a aniform electric field, when ionization and/or .

attachment are appreciable. These studies treat the effect of electron
density gradients by an expansion in higher-order spatial derivatives.
(The present author has calculated the diffusion coefficients for these
higher-order terms in argon at law values of E/N, where electron impact
ionization is negligible.36) Using this approach, the electron density in

an avalanche or swarm can be described by an expanded continuity equa-
tion with position- and time- independent coefficients. A comparison with

5,8
Monte Carlo results indicates excellent agreement.

The technique described above is not immediately applicable to the sheath
problem, because of the assumption of a uniform electric field. An exten-
sion of the method to include spatial gradients of the field does not appear
practical. A more feasible approach, outlined by Allis.7 involves a
direct solution of the Boltzmann equation without expansion. He derives

an equation for the flux of electrons in the two-dimensional space (W, V),

where W is the total electron energy and V is the electric potential. This
approach neglects the srecific angular dependence of the distribution func- 1
tion and hence prevents the use of differential cross sections. We ]
propose to include a third independent variable defining the component of
electron motion in the field direction and to solve the Boltzmann equation

numerically. This method will be discussed in the following sectien.

A technique similar to the one proposed here has been used by Fournier,

6

et al” to analyze the cathode region of a glow discharge. His work has
not been published in detail, so it is not clear what calculational methods
were used or what assumptions were made. Preliminary results
indicate that this method provides an accurate description of the electron

’

kinetics in a sheath. Other approaches which make simplifying assump-

tions in order to ease the numerical calculation are useful in understanding

the physics of a situation and in arriving at analytic expressions for trans-
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port and ionization coefficients but are not considered accurate enough or B

general enough for the present study.

An analysis which comes very close to meeting the requirements of our
model for electron and ion kinetics was presented by Whipple, et al.l4 ‘
They obtained a self-consistent solutionof the Boltzmann equation for

electrons and ions along with Poisson's equation, in a low-pressure plasma

diode. The main shortcoming of this work was the use of an inverse fifth

power law potential to describe collisions between charged particles and

neutrals. The method of solution, however, involves a nested iteration
scheme which should work equally well with the more accurate collision |

term required here.

The analyses of collision-dominated sheaths cover a variety of special
situations, from MHD generators to gas discharges, from the cathode
fall region to the positive column, both transient and steady state. The
equations used to describe the plasma, however, differ little from one
treatment to the next. The methods of solution depend on geometry and

time scale, but qualitatively are very similar. The principal drawback

in all cases is in the treatment of electron kinetics. The use of moment
equations with equilibrium coefficients is more accurate in some situations

than in others but always falls short of providing a complete model,

What all the studies have shown is that in treating sheaths and streamers,

it is important to consider neutral density variations, space charge induced
fields and nonequilibrium electron kinetics. However, these effects have
never been brought together into a single, unified theory of the plasma sheath.
The only significant addition to the model of the cathode fall since Ward's

ek has been the inclusion of an external source term?o' 24, 27

2,3,6

early work
The recent renewal of interest in the problem should lead to signifi-

cant contributions in the near future.

e e e o -




4.0 MATHEMATICAL MODEL

The equations describing electron and ion kinetics in an electric field are pre-
sented below. The Boltzmann collision term for electrons is derived in its

, full angular dependent form so as to be applicable in the case of strongly

L anisotropic distributions. Elastic and inelastic collisions are treated along
with various electron production and loss processes, The continuity and
momentum equations for positive and negative ions are modified to include a

source term. The gas dynamic equations will be presented in Section 5. 2.

4.1 The Boltzmann Equation

The distribution function, f(c, T, t), provides a complete statistical descrip-
tion of the electrons in a weakly-ionized gas. The number of electrons in
the volume element (I, r+dr) with velocities in the range (T, c+dc) at time

t is given by f(C) T, t) dc dr dt. The equation which describes the evolution

of this function in space and time is the collisional Boltzmann equation,

af —. - . _ ( of )
e S Rty S B v.f = (5 (1)
C

where a is the acceleration due to electric and magnetic fields. In general, ‘

-l
a = o

< (E + cx B) (2) 4
m

where e is the absolute value of the electronic charge. The term on the
right in Equation (1) represents the change in f due to collisions and will be

described in detail below.

If we consider for the moment, variations in one spatialdimension, with
axis antiparallel to the applied electric field, then Equation (1) can be
rewritten for f(c, Cy' y) as

of e ef (af) i
‘y ay fm G 6cy Y (3)
C

-
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where E(y) is the magnitude of the local electric field, By dividing both sides
of Equation (3) by cy and eFE(y) we have,

- N (R (_af_)
,.1 ap 7 . ecyE(Y) ot (4)

C

2

’ 1
where ¢ = e/ E(y)dy is the electron potential energy and §{ = —mc)‘;Z
is the electron® kinetic energy in the field direction. If we define the

total kinetic energy as € = —;mcz, then f can be represented as the sum
of two functions, f{ (€, £, ¢) and f+( €, €,¢), for the distribution of electrons

moving with (cy< 0) and against (cy > 0) the electric field, respectively.

In the absence of collisions, f is constant along the lines § - ¢ = const.
These are known as the characteristics and also correspond to electron
trajectories in the two-dimensional space (€,¢). When collisions are
included, the term on the right in Equation (4) represents the change in

f along the characteristics. As we shall see below, the collision term is

a complicated function of f and the various cross sections. Thepresent
method of solution will be to estimate f, use this in evaluating the colli-
sion term, and then integrate Equation (4) along the characteristics. The
distribution function thus obtained becomes the next estimate in an iterative
procedure which continues until convergence is reached. This technique

l 31 3,3
4 has been used in similar situations by the present author and others3 ’

with considerable success.

The boundary conditions for £+ are given at® = 0 and those for f_at
¢ = ¢max' The function f (€, £,0) may represent the distribution of
electrons ejected from a cathode surface by ion impact, or it may equal

zero for a nonemitting surface. The function f (€, §, ¢max) is either

the distribution of electrons at the head of the positive column (¢max= Vels
or at the anode (f_ = 0), or along an axis of symmetry (f_=f,). Along
the locus of turning points, § = 0, the condition f+(e,0,¢) =f (€,0,¢)

applies.

11
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Boltzmann Collision Term

The collision term in the Boltzmann equation represents the rate at which
electrons are scattered into or out of a given region of phase space as a
result of collisions with ions, neutrals, or other electrons. For the pres-
ent, we shall consider only collisions with neutral pa.ticles and recom-
bination with positive ions. The neutral particle react;.ions include elastic,
inelastic and superelastic scattering, ionization and attachment. The
first three processes result in a change of phase space coordinates for a
single electron, whereas the second two processes involve the creation or
removal of an electron. Positive ion recombination also involves the loss
of an electron. The collision term is then the sum of contributions from

the various processes, i.e.

(-6 () () 6 (g

e

The individual terms will now be derived.
a) Elastic Collisions:
The number of electrons per unit volume with velocities in the range
(S, TF dc) which are scattered through an angle (¥, ¥ ) into the solid
— — —_—

angle dw by elastic collisions with molecules in the range (C, C + dC

in a time interval dt is,
— - - —
dn = f(c)dc F(C) dC g o (v,g) dw at (6)

where g is the magnitude of the relative velocity and q, (7,8) is the differ-
ential elastic cross section. The scattering is defined by a polar angle

Y and azimuth angle ¥ which give the rotation of the relative velocity in

the center of mass coordinate system. The functions fz_c.) and F(—C.) are

the velocity distributions of the electrons and molecules respectively. (The
spatial dependence has been suppressed here since all collisions are considered
point encounters involving no change in position.) The rate of change of

the distribution function is found bydividing dn by dc and dt.

12
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Consider now a background gas which is perfectly cold, i.e. F(—a =
NG(E)o This is an excellent approximation in describing collisions
between electrons and heavy particles when the electron mean energy is
much greater than the gas thermal energy. The relative velocity, g, is
now equal to the initial electron velocity, c. After integrating Equation(6)

over C we have,

dn

—
oo = f(c) Nco (7,c) dw 7
dcdt i %)
where
dw = siny d?Y d¥

Each collision term can be divided into two parts, one being the rate at
which electrons are scattered out of a given element in velocity space and
the other being the rate at which they are scattered in. The rate of scatter-
ing out can be found from Equation (7) by integrating over all possible

scattering angles., This gives,

of —-
(Tt) = f(c) NeQ_(c) (8)
e, out
where Qe(c) = fae( 7',(:) dw

The number of electrons scattered into the interval (ET <+ d-c-:.) is just
the sum of electrons scattered out of all other intervals (E’l, ?:: +d2:’1)

which have final velocities in (¢, &+ d¢). That is,
() = [& @Nefaw oo e 815D (9)
e, in

where E; is the final velocity of an electron with initial velocity ?l’ The

delta function in Equation (9) is given in cylindrical ccordinated by

6 (c,-c) 8(6,- 9)6(¢2-¢L

8(c,-d) = (10)

c% sin 02

13




For an elastic encounter with a stationary target,

1/2
2Mm
c, = € [1 7 (1 - cos)’)] (11)
m M . :
and c,cos 02 e c, cos 91 + M+mcl (cosO1 cos? + sanl sinY cos V)

(12)

where m and M are the masses of the electron and the molecule respectively.

We new change the variable of integration in Equation (9 ) from <, to <,

and expand all functions of ¢| in a Taylor series around c,, sincec)-c;

is of order m/M which is small. Thus,
m
T‘ dc1 = [1 +—1\71— (1 - cos)’)] dc2 {13)
and o, Hcy, 0.0 ol ¥iéy) ~ ¢y Ha., B jo (¥ e,)
I il e U B 2 o BN Co
0 3
+ (e,-¢c;) &2 [c f(c, 6,) ol Y.C)] (14)

C=CZ

e

with ¢ -¢c, ~ ¢, M (l-cos?) (15)

Using these expressions in Equation (9 ) and integrating over c¢., and ¢2,

we have
(os : $ 00
~ Nfsing, df f(c, 0.)c d 4 _
at )e.in 177 1 _[ — oe( S sinO2
m N 9 4 . 6(02-6)
* A C—Z e © /smoldelf(c. 91)/du (l-cos?) gl 7, ¢} —S—l—r;o_ (16)
&

The second term on the right is a result of the small amount of energy trans-

ferred from the electron to the target in the form of recoil motion.

b) Inelastic Collisions:

Since the rate of scattering out is independent of the final electron velocity,

we have, in direct analogy with the elastic case,

of
(ﬁ)h, it = Nf(c,0) th(C) (17)
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where Qh(c) = fdh(Y,c) dw for each inelastic process. (There is an

implied summation over h when more than one inelastic process exists.)

In an inelastic collision the final velocity is related to the initial velocity
by,

—Z-mc2 = = mc¢ - € (18)

where €, is the kinetic energy transferred to internal energy of the mole-

cule. (Here recoil has been neglected for inelastic collisions. It can be

included along with the recoil term for elastic scattering if necessary-)

From this relation it follows that cldc1 = czdcz. We can now replace o, with

gy in Equation (9 ) and integrate over <, and ¢2 to obtain,
of

2
S ; 6(6,-6)
,in s1n02 (19)

The angles before and after the collision are related by,

c cosO2 = cf(cosol cos? + sin9l sin? cos ¥ ). (20)

1 1 2
where z mc, = S mc o fh

c) Superelastic Collisions:

The superelastic collision term is obtained from the corresponding inelastic
collision term by changing €, to - ¢€,, oy to o, and N to N*. The

reverse cross section, as, is related to the forward by detailed balance,

i.e.

cp o(Y ¢c)) = ¢, OnY c,) (21)

(22)




Using these expressions in Equations(17)and (19) we have,

of e * 23
6t) = N {(c,0) c+Qh(c+) (23)
s, out
6(6,-90)
of * . 2
- = 6.46 f(c 6 dw o, (7 ¢)
%ud (at)s i N' o [ein6,d6, f(c_ ) h oin 6 (24)
) 2
1 2
where ‘%‘ mcy = 7 me + € -

k d) Ionizing Collisions:

First, we define the probability per unit time that an electron with velocity
¢y making an ionizing collision produces an electron (scattered or ejected)

with velocity in the range (cz.c +dc2) as,

2
Nc1 Qi(cl’ cz)dc2

Then, by conservation of energy, another electron is also produced with
velocity <, given by,

— o - = - €

5 mc mc 5 me ¢ (25)

where Gi 18 the ionization energy. (We have assumed for the present that

the scattered and ejected electrons are produced isotropically.) The collision

term for scattering out by ionizing collisions is then

c. N2

of
(5;) = Nif(c,0) ¢ / Q, (escp)de, (26)
i, out °
where as before, —;' mci = —;—mcz + ‘i' The upper limit of integration

is the velocity at which the scattered and ejected electrons have equal energy.

Above this value, we begin counting the same events over again..

BT
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The collision term for electrons scattered into the range (c,c+dc) is, by

analogy with the inelastic term,

af . 3 o 7
(—-a—t = stl.nel d91 f f(cl. 01) —":— Qi (Cl,c)d(:l (27)
i,in

4
The integration is carried out over all velocities which can contribute to

the population at c.

e) Attachment and Recombination:

These processes result in the loss of an electron, so the only effect on the

distribution function is,

of

(—t = Nif(c,0) c [Q,(c) + Q_(c)] (28)
a, r,out

Now the Boltzmann collision term is equal to the sum of all contributions

scattered in, minus the sum of those scattered out.

All of the terms representing electrons scattered into the interval (c, T+ d_c.:)
involve an integration over the scattering angle, Y , the angle before collision,
01, and a delta function specifying the orientation after the collision 6 .,

For example, the elastic term neglecting recoil is,

8(6,-6)d(q,-9p)
1 /86f 3 h” &
L (&) - nfsine a6, dg, f(c,8)) [dw o (7.0) —55 (29)
e, in &
The delta function can be eliminated by noting that dw,,= sin6, d6, d¢2
and performing the integration over 02 and ¢2. Thus,
1 /of e
- (at )e in-N/smOIdoldcﬁl f(c, 6,) o (7. ¢) (30)

where cos? = cos Olcoso + sin 01 sin@ cos(qu1 -¢). A similar transfor-
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mation can be made on the remaining scattered-in collision terms. Given
a differential cross section, 0, the integral in Equation (30) can be thought

of as an operator, K_, acting on f. Then, if we define an operator, K, as

e
the sum of operators for each collision process, we can write Equation (4)

as

. 1/2
gl—”% 2 eE;N(«I’) (ei) {K'Q(e)}f (31)

where Q(€) is the total cross section for electrons with kinetic energy,

€= ¢4+,

The operator, K, acts in the two-dimensional space (£,7), i.e. the value

of Kf on the plane ¢ = wo is independent of the values of f for ¢ ¢ (,’?o. Thus

K can be represented numerically as a four-dimensional matrix. Since the
range in each dimension must be subdivided into at least 100 intervals, the
storage of such a matrix is completely out of the question. The functions Kf
and f, defined in terms of three independent variables, would require three-
dimensional arrays for their storage, also highly impractical. However,
the function f does not have to be saved from one iteration to the next in
solving Equation (31). Only Kf must be stored, and this can be done by making
a simplifying assumption. In most practical cases, the function Kf is nearly
isotropic in velocity space. Therefore, we will expand the angular depen-

dence of Kf in Legendre polynomials, e.g.

) (]
K f = 'ﬁlc_ (gti) =Y Ag(e) Py (cosb) - (32)
e, in
£=0
f
where Ap(c) = 21; - fl i (%) Py (cos@) d(cos §) (33)
-1 e, in

It should be pointed out at the beginning that the expansion in Equation (32)
is quite different from the usual expansion of f. In particular, if oe(‘)', c)

can be represented as the sum of n Legendre polynomials, Py (cos?), then

18
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the sum in Equation (32) will also have n nonzero terms, regardless of the
angular dependence of f. As a special case, if ae(c) is isotropic, then Kf

is always independent of 6 and can be represented by one term,

Now, using Equation (29) in (33), we have

Al (c) = Nc ZIZ+ 1 fsinOl dOl f(c, Gl)fdu 02()’, c) Py (cost) (34)

The addition theorem for spherical harmonics gives

!
Py (cos6,) =\ /532 3 Py (cos8)) Y] (% ¥) (35)

\/21+1

which, after integrating over the angle ¥, becomes

2m
f Py (cos 02) dy = 27P) (cos 91) Py (cos?) (36)
0

When this is inserted into Equation (34), the integrals can be separated

and Equation (32) becomes,

af = 1
(55) = NeY 5T () Q) By (cos6) (37)
e, 1n [=O
where Q[ {c} = 470y (c) = 4ﬂﬂz+—l[d(cos)’) gV, c) Py (cos?)
and f[ (c) = 2—[2—+~Ljd(coso) f(c,0) Py (cos®)

In evaluating the integrals for the recoil term, there is an additional fac-

tor of (1-cos¥) to be considered. The integration over scattering angle,

/d(cos)’) (l-cosy) ae(‘y. c) Pl (cos?)
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can be carried out by employing the recursion relation,

e Ly /
*Fpixl = ey P e 2 +1 Fr- )

to obtain

2 £+ 1 J
27+ 1 ["l © - 2573 9+1® 27191

The complete Boltzmann collision term can now be written,

(38)

(]

€

- of 1 .
(35) =NeX  a7yT § () QF () Py (cos6)
Cc l=0
m N 8 4 - 1 2 141
M oz ee {C Xy TFIT ff‘c’[Qe(c)-m Q, ()

£=0

L
ST Qf_l(c)] Pt(cose)l

2
o C
1 + h
+ N z 20+ 1 Zh < fp(e) Qulc ) By (cosf)

£=0
74
o 3 ® o ;
+ N Z 2t% 1 [ c fz(cl)Ql(cl,c) dc1 ) (cosé€)
£=z0 i
+
c-W2 |
- Ncf(c,6) [Q§+Z Q:+] ot (c,cz) dc2+Q:+
3 h P o

n

+ r
~ Qo] (39)




It has been assumed that secondary electrons produced in ionizing colli-
3
sions are emitted isotropically, The contributions from superelastic
collisions have been omitted. Because of the very small ratio of electron
mass to neutral mass, the recoil term can also be neglected for most
; electric discharge applications,
p
: mc
The Boltzmann equation, in terms of the electron energy, € = e is then
|
:
of a1 1 1 SR e
_— 4 —_— — —
8¢ a¢ eE/N(¢) cos@ l’go 27+ 1 {fl (€.0) Qy(€)
| € + €
h h
P _ £ (e+€,.0) Qpete,)
h
(]
7 f g ’ i '}
e € fp(e’,0) Qe ,€) de Py (cosg)
(e-€)/2 .
e h 1 i ’
- f(&n, ) €
(£.1.0) qQj(e) + 3 lte) + [ Q. (e €)d
h o
n 1/2
a _+ r = _6—)

‘ + Qte) + o Q (e )]] where cos@ t(( (40)
The integro-differential equation above can be solved for the distribution
function f(£,1,9), or £(€,0,¢), given a nonuniform E/N(¢) and a known set
of cross sections, The program which was developed to do this will be
described in the following section,

|
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4,2 Electric Field and Ion Kinetics

Poisson's equation for the scalar potential, ¢, defined by E = -V @, is
& e
V¢ = ;o m -n - n) (41)

where n,n, and n_ are the positive ion, negative ion, and electron num-
ber densities, respectively. For the present, only one type of positive
ion and negative ion will be considered. The equations can easily be modi-

fied to include more than one.

The heavy ions are governed by the moment equations, which represent

conservation of number, momentum and energy. The continuity equations

are
Ve (n+v+) = S + e = rin+n_ - ren+ne = S+ (42)
vV (n_v_) = an, - dn_ - rin+n_ = S_ (43)

where ;+ and 3_ are the positive and negative ion drift velocities. The
terms on the right hand side represent production and loss due to external
ionization, S, Townsend ionization, z, attachment, a, detachment, d, and
ion-ion and electron-ion recombination, T and T respectively, The
coefficients involving electron impact are defined in terms of the electron

energy distribution and the appropriate cross sections, i.e.

®©
2e [ i
= = — )
z oV N\/ Q(C)fo(f.ﬁ)éde

(o]

[}
2e a
N \/—r; f Q (€) fo(c,r,,) €de
o

2e r r
. \/-;-f QT(e) £ (€,0) ede

o

[
i

and r
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Notice that these coefficients are functions of position, as well as of the bound-

ary conditions which go into calculating fc.(t',&7 ).

. . =) = . .
The mean velocities, . and v , are determined by momentum conservation,

mn_\;"—‘+\" en E =-mnv (¥ -V)-m
++(+\)V+ P +++(+ )

-+ + V+S+ (44)

i

mn(V'\')v+\-p+enE=-mnu(v-V)-m;S (45)
where m and m are the masses of positive and negative ions, respectively
and V+ and v are the total collision frequencies of these ions with neutrals,
The mean neutral velocity is V. An equation of state relates the ion pressure,

, to the mean thermal velocity, ¢ , and the temperature, T. Thus
P, ¥ Co P

T

Z
pt = l/3m1nici = n kT, (46)

The series of moment equations for heavy ions is terminated by assuming
their thermal motion to be in equilibrium at the local gas temperature, T.
This approximation is fairly good because of the nearly equal masses of

ions and neutrals and the fact that at high pressures the sheath is collision

dominated,

Let us consider now a plasma consisting of positive ions and electrons in
a one-dimensional geometry. Then using Equation (42) in (44) without gas

flow,

2
57 n+ (m+v+ + kT+) = m+n+u+v+ - eEn+ (47)

If diffusion is negligible compared to inertia (n+~ const) and the drift energy

: 2
is large compared to thermal energy (m+v+>> kT+), then

o
i, SN SEY S (48)
oy . 2  2Z2m. v

+ 4+
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or in terms of the potential, ¢,

\

V+ _ .V_+. ) e _1__ (49)
ER7) 2E 2m+ v,

The collision frequency for momentum transfer is given by

= 50
v, NQv+ (50)

where Q is dominated by charge exchange and can be considered independent

of velocity. .

Given E(¢), Equation (29) is integrated to obtain v+(<P). Then the positive

ion number density is determined from

e (51)

where j is given and j (¢) is obtained from the solution of Boltzmann's
) g Je (4

equation for electrons. Finally, Equation (41) is written in terms of ¢,

2
2 (2) - & [ 0]

(1)

and integrated to yield a new E'"'(¢). This is used in Equation (29) and

the procedure is repeated until convergence is reached. The Boltzmann

(1)

equation for electrons must be solved for each new field, E" .
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5.0 COMPUTER PROGRAMS

Two computer programs are described briefly in this section. The first was
developed entirely under the present contract to solve the two-dimensional
Boltzmann equation for electrons which is then coupled self-consistently with
the ion kinetics, gas dynamics, and field equations, The second is a program
for solving the boundary layer equations along a flat plate which was modified
in a previous contract to include a heat addition term defined by the electric

discharge.

5.1 Program SHEATH

The approach used to solve the Boltzmann equation involves a numerical
integration along the characteristics, ¢ - » = const, combined with an itera-
tion scheme for evaluating the collision integral, Kf. Initially it is assumed
that there is no contribution from scattered-in electrons, i.e, Kf = 0, and
Equation (40) is integrated in both the forward and backward directions for
each value of . This gives a first approximation to the distribution function

(D (1)

from which a new Kf' ' is calculated, and the procedure is repeated

until convergence is reached.

The operations required to generate successive approximations to the col-
lision integral are performed as the integration proceeds, so that the
function f does not have to be stored between iterations, Only Kf has to

be retained. By performing the integrations in a specific order, the same
array can be used to store the old and the new values of Kf. If Kf is repre-
sented by the first two terms in a Legendre expansion, then two two-dimen-
sional arrays are needed. These arrays are trapezoidal in shape, since
f(¢,n,0) =0 for § >0 +€o, where 60 is the maximum value of longitudinal

energy for electrons leaving the cathode.

The storage arrays for Kf are arranged in core as in Figure 1 to minimize
central memory requirements, The dimensions were chosen to give 1 eV

resolution for a 200 V cathode fall, The energy distribution of electrons

25
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emitted from a cathode by positive ion impact has a cutoff at Gi - Z(QW, where
e, is the ionization potential of the gas and Y 18 the work function of the
cathode material. This cutoff is usually less than 20 eV, so that 20 mesh
points at the cathode are again sufficient for 1 eV resolution., The area of
the array in Figure 1 is 48, 24074 (136, 160g) words, Obviously, the storage
of f (or of Kf without angular expansion), which would require at least ten

times this much core, is impractical,

Boundary conditions are specified at the cathode and at the anode. At the

cathode, the energy and angular distribution of emitted electrons are given,
At the anode, the distribution of backscattered and ejected secondary elec-
trons is given in terms of the incident primary flux. At the turning points,

the forward and backward fluxes are equal.

The algorithm used for the numerical integration of Equation (40) is the

following,
Q. Q.
2 i+ 1 2 i
= |C C. — - =) f —_ 4 —
a1 [ T e B (Ae E/Ni+1) 1]) (Af % E/Ni) 55
h : €)'kt and 4¢ is th The scheme i d
where C S eE/N (-f_) an § is the energy step. e scheme is secon

order and absolutely stable. The relative error at each step is,

" 2
n el JO6 2 (4 _Q9
8 R ( 2) Ty ( 2 E/N ) i

The error is small as long as

a¢ < 0.5E/NQ

This condition is easily satisfied near the cathode surface, where E/NQ~€,,
and €i is typically 20 eV, It can also be satisfied in the positive
column, where E/NQ <1 eV, However, in the negative glow, the field be-

comes very small and may even reverse directions, Under these conditions,

26




apouy

10¢

apoyje

jeabaju| uojisi)jo) J10) Aessy abeso)s [ 8anbi4
022

0

(pJemvyoeq)
1)

(paemuoy)
0y

0C

0e¢

apoue)

102

apouy

27




the algorithm of Equation (53) cannot be used and in fact the choice of vari-
ables in Equation (40) is no longer appropriate, since position becomes a |

multivalued function of the potential.

In the region where E/NQ<<1 eV, the Boltzmann equation can better be

expressed as,

1/2
2 emy) F o= N () k- ae} f (55)

Now a fixed position step, 4y, is chosen with the condition that,

Ay < 0.283/NQ, where 1/NQ is the electron mean free path. This choice

of variables cannot be used in the high field region near the cathode., There-
fore, to fully define f in every region of the discharge, we must start with
coordinates (£,7,¢) in the cathode fall, change to coordinates (&,n,y) in
the negative glow and Faraday dark space, and back to (&, n,¢) in the posi-

tive column. Basically the choice of coordinates depends on whether the

distribution function is changing more rapidly with respect to position or

potential,

With the present program, only the cathode fall region has been examined,

The code is currently set up for integration in the plane 1 = 0, i.e. electrons

are restricted to moving either with or directly against the electric field,

This simplification reduces the running time by about a factor of ten and
allows rapid checkout and modification of the program. The distribution
function is normalized in a one-dimensional velocity space, i.e.

o0
f[[+(£,w) +E (60 )]t'l/zdc = n_(©) (56)

(&}

i
where f+ is the distribution of electrons moving toward the anode and f is i
the distribution moving toward the cathode. These functions satisfy Equation(31). 1

with one of the following pairs of collision terms.

gy e
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(a) Forward scattering:

h
Kf+ = zh: Q (€+ (h) f+(e+ eh,q;)

+2/ —Q—iﬂ—f(ecp)de

¢ _f
€+€
h i
Q) = 2 Qe+ Qle) (57)
h

(b) Isotropic scattering:

Kf = Q:(e) [£+(f,¢) + f_(f.w)] +%; Qh(e+£h) [f+(€+€h,(p)+ f_(e+ﬁ‘,(p)]

- -

o f o) [,c"0) + £ orpac’

!
- €
€+€1€ i

ate) = Q%) + 3 Q'@ + Q') (58)

(c) Anisotropic scattering:

Kfy = Qf(e)ft(e,¢)+o‘f(e) (e, ¢)

+ Z [Qi‘(e +e) ft(e+€h,<0) + Q}_‘(¢+ €) fo(e+ eh,cp)]

h
o722 [ @ o ral e el fae
€ -€.
€+€1 i +
= Q@+t [Q:(€)+ Q") +Qjta+al@
siie:
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-

ST,

The cross sections for attachment and recombination are small at high
energies and are therefore not included in the analysis of the cathode fall
region. They will be important, however, in the negative glow, Faraday
dark space, and positive column. The secondaries produced by ionizing
collisions are assumed to be evenly distributed in energy from zero to

€- €. This is a good approximation near threshold, However, at higher
energies the distribution is peaked near zero and € ~€;, with a minimum

at (€ - ei)IZ. Previous workers have found that the actual distribution of
secondaries makes little difference to the overall results, This aspect may

be investigated with the present code in the future.

The input parameters required by the program are (1) the electric field
strength at the cathode, (2) the reduced gas pressure (this is the actual
pressure reduced to standard temperature, i.e. R, = p(273.16°K/T), and
(3) the voltage difference between cathode and anode, The function E/N(¢)
is then generated internally for either a constant or linear dependence on y.
The cross sections are read in next, following a standardized format used
previously by the author in an equilibrium Boltzmann code. (The specific
input deck structure will be provided in the user’s manual.) And finally,

the energy distribution of electrons leaving the cathode is given.

The output data supplied by the program may be varied to suit the users'
needs, Presently, the listing is set up as follows: The input parameters
and cross sections are printed first, Then, in order to monitor the con-
vergence, the electron current, j,, as a function of potential,and the energy
distribution, fA’ at the anode are listed after each iteration, The criterion
for convergence is that the electron current at the anode change by no more
than one percent, When this is reached, the following quantities are printed
as functions of ¢: the electron mean energy, €, the distance from the

cathode, y, the electron number density, n,, the electron drift velocity,

el
- y 6)
Ver Townsend's first ionization coefficient, defined as a = -J—l—— -5??, and
e

E/N. Even though the entire distribution function £(§,n,¢) is never known
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at any given time in the calculation, it can be printed out if desired. All
the important information, however, can be extracted by listing f(&,7,¢,)
at specific locations, Py and by listing various moment integrals, such as
drift velocity, mean energy, diffusion coefficient, etc., as functions of

position,

5.2 Program CATFAL

CATFAL is a computer program for calculating laminar and turbulent boundary
layer development in compressible flow including the effects of cathode fall.
The program is an extension of a program written at Princeton University

and was developed under contract with Air Force Weapons Laboratory to
analyze a high power CO CW gas laser, The laser configuration is illustrated
in Figure 2. Gas flows through a two-dimensional supersonic nozzle at Mach
3.5 to 4.0, A high voltage (2-5 kV) is applied perpendicular to the flow and a
discharge established in the region where the optical power is to be extracted.
The electrical discharge is stabilized by means of an electron beam whose
electrons have an energy of approximately 150 keV., In such a laser, a large
potential gradient exists in the proximity of the cathode which is usually refer-

red to as the ''cathode fall region''.

In this region, due to the large potential drop, strong electric fields are
established. This results in a substantial amount of power in the form of

heat being dissipated in the boundary layer next to the cathode. Such action
produces a disturbance which propagates into the flow region. Because of

the stringent requirements of flow homogeneity in CO CW lasers, the CATFAL
computer program was written to estimate the magnitude of the flow dis-
turbance. The code predicts the effect of cathode fall on the growth rate of
the boundary layer. The analytical model for CATFAL was developed by
Claudio Parazzoli, formerly of Northrop. Experiments were performed to
verify the numerical predictions of CATFAL and those results are published

in Reference 1.
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5.2, 1 Analytical Model

In this section we shall briefly describe the boundary layer equations for a
turbulent compressible flow on a flat plate and we shall put them in a form

manageable for numerical calculations.

Boundary Layer Equations

The equations governing the flow of a compressible, two-dimensional boundary

layer are:

Continuity Equation

2pu L 3pv _ 4 (60)

D R I R T TS Py P e T ———

du du du 9T
PUFx * Wy "Pelax T oy 1)
Energy Equation
0 0
dh_ dh” _ 3 : 62
PU 3%~ * PV Y =3y (@ + ur) +Q (62)

Figure 3 illustrates the relevant quantities in Equations (60) through (62).

Equations (60) to (62) apply both to laminar and turbulent boundary layer

provided that the definitions for T and q are taken to be

T/ = v 5y - u'y’
! = aﬂ
o eo, B.7F |
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where -u'v'is the kinematic Reynold's stress; -v'h' is the kinematic turbulent

heat flux; v = %— is the molecular kinematic viscosity, and Vg = pkc is the
molecular kinematic conductivity. g

Then we define an effective viscosity and an effective conductivity as:

T/p .

S =
) \Y

(1]
(Te]

o e
<y e

Finally, the following quantities are introduced for convenience in the calcula-

tion:

Pe U(x) - pu (x, y)

£' (x,n) = pe T (%) (63)
o (o]
g'" (x,n) = Pe - (x ¥
= (64)
B = B
(x)

a (x,n) = _%C_i)' (65)

n = FY(X—) (66)

where 8 is the boundary layer displacement thickness given as:
@

§* = f (Pe U(X) = pu (x, ¥)) / pg U(X) dy (67)
o

When written in terms of the new variables defined in Equations (64) to (66),

Equations (60) to (62) become:




Momentum Equation

- {Jrea - e0)'] + [ 0 MR
e

+ {[Q(n-f) Pw YW g ]d' - (2-f') (AP + d, ) E' -
peU X X
pV
W W
o [(n- £0 - 2 - a*fx] a' + P(da-1) + 4, &* =
« (1 - £') &8 £ (68)
Energy Equation
T 7e—1 Mz 1 1
[ag }g._% 2 e (l;e 1) [dz (1-f-)2] }] +
14— Mﬁ eg
P Vv
- g"[Q(n -£) - S -5 ;] = (1-£') §* g *+
e
” 5*4_0627 (69)
b, U(RS - hy)
Y -1 v -1 X
(1-g'H) (1+=— Mi) -1 -2 1(d)
d 1 e
= Y = 3 3 (70)
. (1 - £')
2 e




—— m—— ~“1

where I(d) is:

, d
\ — Y(x)

with x = -Ppi and Y is the variable specific heat ratio across the boundary

layer. Equations (68) to (70) are similar to expressions II-14, II-15
and 1I-16 in Reference 1, The major differences are in Equations (69) and
(70). Equation (69) contains the heat addition term in the R. H.S.

8" Q
p which is absent in Equation 1I-15 of Reference 1. Equation

p UM’ -h)
e e r

(70) accounts for a variable specific heat ratio across the boundary layer, and
reduces to Equation II-16 of Reference l if we take ¥ = %, . In the derivation
of Equation (70), the specific heat ratio of 7, , in the free stream, has been

taken to be constant,

References 1 and 47give detailed discussions of the form of normalized effective

v v
viscosity & = _U%‘. , and effective heat conductivity Veg = _U%g’- ’

50262 Computer Code

The original gas dynamics program was written by H, J. Herring and

G. L. Mellor at Princeton Unive rsity:17 The program performs a numerical
integration of the equations of motion for a compressible two-dimensional
boundary layer. Calculations may be carried out for both laminar and
turbulent flow for arbitrary Reynolds number and freestream Mach number
distribution. Planar or axisymmetric bodies with wall heating or cocling,

wall suction or blowing and rough or smooth wall can be included.

Modifications were made to the program to include bulk heat addition due
to the cathcde fall of a glow discharge in the two-dimensional planar case.

Boundary layer equations were modified to include a heat addition term.
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The program can handle arbitrary gas mixtures of up to four components.
Calculation of molecular viscosity and heat conductivity of gas mixtures as
a function of temperature is included. Allowance of variable specific heats
and ion and electron drift velocities in a gas mixture are computed as a
function of E/N and tabulated for utilization in computing the power term.
Poisson's equation and current continuity equations are then solved using
iterative techniques and Runge-Kutta integration to satisfy certain boundary

conditions.

The MAIN program was modified to compute viscosity and heat conductivity
for an arbitrary gas mixture of up to four components. Subroutine VISC
provides fourth order polynomial curve fits of viscosity, heat conductivity
and Prandl number as a function of temperature. SHRSUB then computes the

specific heat ratio for the gas mixture.

The MAIN program iterates to find velocity (FP) and enthalpy (GP) profiles
within desired convergence criteria, Before each FP-GP iteration, sub-
routine POWER solves Poisson's equation and the current continuity equa-
tions using a fourth order Runge-Kutta approximation. An iterative procedure
is used to satisfy the boundary conditions. Power dissipation in the vicinity

of the cathode is computed and included in the boundary layer calculation.

The program, written entirely in FORTRAN, has been run on the CDC 175 and
has a core requirement less than 160,000 words (octal). Typical running
time with heat addition is normally 3-4 minutes, Output at each X position

is written on file 9 and can be saved on tape or permanent file for subsequent

restart if desired.
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6.0 NUMERICAL RESULTS

The computer program, SHEATH, was developed in stages over a period of
time and was checked at each stage by making comparisons with cases pub-
lished in the literature. All of these runs were made assuming constant gas
density and a known electric field variation. One self-consistent field solution
is given at the end of Section 6.1. The difficulties encountered in extending

the self-consistent solution into the negative glow are discussed in Section 6, 2.

o.1 Nonequilibrium Electron Kinetics

The first runs were made in mercury for comparison with the Monte Carlo
o

3 . ) LS s , . iy 37
¢ simulations of Parker, et al. I'he ionization cross section of Kieffer, et al

was fitted to the functional form,

Qi(e) =

)
—
=]

—

&%)

-~

where A = 5,25€. ¢

; Q& : ;
d a5 " 10.4 ¢V, and 0 = 6.5A". (At this point

the subroutine for reading cross section data in numerical form had not
been incorporated into the program.) Forward scattering was assumed
with no backscatter from the anode. The electrons were allowed to fall
300 V at a constant 1~,‘/p0 of 4000 V/ecm/Torr. The energy distribution of

{ electron current striking the anode is shown in Figure 4,

A similar case was examined in Reference 15 with a gap separation

of 1000 V, The two distributions compare very well below about 250 eV,
indicating that the low energy electrons have reached an equilibrium with
the field. A plot of f, /€ indicates that the distribution is very nearly
Maxwellian in this region,with a temperature of ~100 eV. The peak in the

energy distribution above 300 eV represents those electrons which have suf-
gy

fered no ionizing collisions. The 5 eV width of this peak is a reflection of
the energy distribution leaving the cathode. The gap below 300 V has a
width of € - W, where W is the width of the primary peak. As pointed out

!
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Figure 4 Electron Current at the Anode
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earlier, W = €, - Z(Pw, so the width of the gap is just equal to twice the work

function of the cathode material, (,Dw. "

The electron current density and first Townsend ionization coefficient are
shown in Figure 5. There is no ionization until the electrons have first

been accelerated to the ionization threshold. This occurs aty = €;/E =

0.0104 cm. The Townsend coefficient rises rapidly above threshold and

overshoots the eventual equilibrium value of a, ~4.0 cm_l. (This is to

[ be compared with the value obtained in Referencel5of a,~ 5.1 cm'1
at the same E/N and pressure, but using a different ionization cross section.,)
The nonequilibrium behavior of @ over most of the discharge gap is obvious
from the figure. However, the multiplication factor, M = j.(d)/je(0) = 3.6,

is very close to the value e %9 - 3,3 which would obtain for constant @ =a,.

} The foregoing example was meant to simulate conditions typical of dielectric
breakdown in low pressure gases, where the electric field is uniform. In
order to investigate the nonequilibrium behavior of electrons in the cathode

| region of a glow discharge, we examined the following problem. Let the

r electric field fall linearly from 1000 V/cm at the cathode to 50 V/cm at the |

| midplane and remain constant from there to the anode. The reduced pres-

sure is (.25 Torr and the potential difference is again 300 V (270 V in the
| 3 "cathode fall' and 30 V in the 'mnegative glow'). The results are shown in

Figure 6.

The behavior of @ over the first 0.4 cm is very similar to that of Figure 5,
even though in the present case the electric field has fallen to less than
300 V/em. This is because most of the ionization in this region comes from
the primary group, whose energy is € =¢, independent of the local field.
i The Townsend ionization coefficient for a monoenergetic group of electrons
is a(€) = NQl(€), which has a maximum value of 5. 75 cm~! at 60 eV. Thie
maximum is never reached in practice, however, because secondaries are
produced at low energies with lower ionization efficiencies than the primary 1

group.
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The persistence of ionization after the electric field is reduced is another
nonequilibrium feature evident in Figure 6. The rate at which adecays

from one equilibrium value to a lower one must clearly depend on the degree

of angular scattering, In the present case of forward scattering (which is actually)
no scattering at all) the persistence is most pronounced. As we shall see

later, in the case of isotropic scattering the persistence is reduced. The

situation with real gases in the negative glow is closer to the case of forward
scattering, since the differential cross sections for energies above 20 eV

are very strongly peaked in the forward direction, In fact, the beam-like
character of electrons leaving the cathode fall and persisting through the

negative glow has been well established experimentally.

The electron current and number density are also shown in Figure 6.
Notice that j, increases by about a factor of four in the negative glow or

drift region. With previous theories of the cathode fall using equilibrium

coefficients, current growth in this region would be negligible. Thus

predicted current densities as a function of cathode fall potential would
30

be low. This is clearly evident in a comparison of Ward's results with

experimental data,

As electrons are accelerated away from the cathode surface, the number
density drops initially in order to maintain current continuity, Then as
ionization picks up the density goes through a minimum and begins to rise
exponentially, This same behavior was observed by Tran Ngoc, et al39
in their Monte Carlo simulation. The initial drop is less severe if elec-
trons are emitted from the cathode at higher energy, since they reach

ionization threshold sooner. The electron density is rising faster than

the current at y = 0.4 cm because the drift velocity is falling with the field.

The next set of runs was made in argon with isotropic scattering and one

inelastic process ir addition to ionization. The results are compared with
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the Monte Carlo simulations of Sakai, et al5 in a uniform field, The cross
sections used here are shown in Figure 7, They are similar, though not
identical to those employed in Reference 5, The inelastic cross section,
which is meant to represent the sum of all electronic excitations, was

taken from Schaper, et al. e For elastic scattering we used the momentum
transfer cross section of Spencer, et al4l and for ionization, the measure-

ments of Rapp, et al, 42

The drift velocity and ionization coefficient for E/N = 565 Td (1 Td =
10-1-7 v cmz) are shown in Figure 8 as a function of distance from the
cathode. The most striking feature of these curves is the series of dis-
continuities in the drift velocity beginning near the cathode and diminish-
ing in amplitude as y increases, Similar oscillations had been observed

previously by Sakai, et all? and were ascribed to the onset of inelastic

thresholds. This behavior can now be more fully explained as follows.

Below the first inelastic threshold at 11,5 eV there are only primary elec-
trons which have suffered no inelastic collisions. Due to elastic scattering
however, these electrons are moving both with and against the electric field.
Their drift velocity is towards the anode and increases as they are acceler-

ated by the field.

Above the first inelastic threshold, there appears a group of electrons which
have suffered one inelastic collision. They have an energy € =¢ - € -

Those electrons which are moving toward the cathode will be decelerated

by the field until they reach zero velocity at the point y = (h/E. Thus,
immediately above the first inelastic threshold, there is a group of electrons
with zero drift velocity superimposed on the primary group, This gives rise
to the first discontinuity., The drift velocity then continues to increase as

both groups of electrons are accelerated toward the anode,
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A similar drop in the drift velocity occurs at the ionization threshold of
16 eV, except that here the energy loss is not discrete but is distributed
over a range of values, A series of discontinuities occurs at two, three,
and four times the inelastic and ionization thresholds, caused by electrons
which have undergone two, three, and four inelastic or ionizing collisions,
and so on. The amplitude of the oscillations diminishes as the number of
secondary electrons increases., These have a broad distribution of ener-

gies and the effect is smeared out.

Also shown in Figure 8 is the variation in drift velocity when forward scat-
tering is assumed, There are no oscillations in this case because all the

electrons are moving toward the anode. The equilibrium value of drift

velocity, which is reached at about y = 0.2 cm, is an order of magnitude
larger than for isotropic scattering, This implies an inverse relationship
for the electron densities in the two cases, since the current densities are

almost the same when normalized to the current density at the cathode,

An important point should be made at this time with regard to the emission

of electrons from the cathode, Experiments which measure secondary

electron ejection by ion impact are usually carried out in a high vacuum
environment. In the presence of a gas at high pressure, the yield can be
considerably reduced, The electron current density at the cathode is not
only a function of the rate of ejection but also depends on the surface E/N
and on the degree of scattering by the gas, In the cases considered above,
electrons were ejected from the cathode at the rate of ¥ per unit area, The
current density in the case of forward scattering was e?, while for isotropic
scattering it was only 0.3 e? because 70% of the ejected electrons were

backscattered in the gas and reabsorbed by the cathode.

The Townsend a coefficient in Figure 8 is zero below the ionization threshold

then rises rapidly to a peak and undergoes a few oscillations analagous to
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those in the drift velocity. The equilibrium value of 4.5 cm.1 aty = 0.2 cm E
compares well with the value obtained by Tagashira, et all2 of 4,3 cm.l -

The drift velocity at this point is 2.7 x 107 cm/sec compared to 3.2 x 107 cm/sec
in Reference 4 , The increase in drift velocity from y = 0,2 cm to 0.5 cm :
is a consequence of the boundary condition "at the absorbing anode. The :
flux of electrons moving toward the cathode decreases from its equilibrium
value to zero at the anode., At this point all electrons are moving in the
forward direction so the drift velocity is the same as that with forward

scattering.

The distribution of electron current striking the anode is shown in Figure 9,
The most prominant feature of this plot is the series of equally spaced
peaks below 100 V. These represent the groups of electrons which have
undergone 0, 1, 2, ... inelastic energies leaving the cathode, In this case,

a box of 0.5 eV width has been assumed. The series of plateaus represent
electrons which have undergone one ionizing and 0, 1, 2, ... inelastic col-
lisions. Electrons experiencing more than one ionizing collision and all

secondary electrons make up the body of the distribution,

In Figure 10 the electron energy distribution is plotted on a linear scale for
comparison with the Monte Carlo results of Sakai, et al.5 Although there is
considerable statistical scatter in the Monte Carlo data, some areas of simi-
larity and difference can be pointed out. The Monte Carlo results fall con-
sistently below the present results at energies below 10 eV and consistently
above 10 eV and 20 eV. The high energy tail of the distribution is in fairly
good agreement. The differences may be due to the different cross sections

used or they may reflect the approximations made in angular scattering.

The next run in argon was made with an electric field which varied linearly

with position, falling from 600 V/cm/Torr at the cathode to 30 V/cm/Torr

at the anode, Figure llshows the variation of electron current and number

density with distance from the cathode, The anode is at 0.33 cm Torr and
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was taken to be either perfectly absorbing or to reflect 50% of the incident
electrons. The electron current is constant below the ionization threshold
which occurs at 0,028 cm Torr., It then rises smoothly and begins to level
off before rising again in front of the anode. The number density behaves
just as the inverse of the drift velocity at low energies since je =en W,
The falloff in approaching the anode indicates a rising drift velocity. Notice
that with 50% backscatter, the effect of the anode on the electron distribu-

tion is reduced,

The Townsend ionization coefficient for this case is shown in Figure 12,
The form is quite different from what would be obtained by assuming an
equilibrium energy distribution at the local E/N. The ionization in the
laiter case would be greatest at the cathode and fall off as shown by the
dotted line. The actual ionization is zero near the cathode due to the thres-
hold effect and is higher than the equilibrium value in the low field region
because of the time required for fast electrons to slow down. Note once

again the effect of changing the boundary condition at the anode.

The three functions which will couple directly to the ion kinetics and the
field equations in the self-consistent model of the cathode region are the
ionization coefficient and the electron current and number densities versus
position. The product of the first two of these, @)e» gives the ionization
source density which appears in the positive ion continuity equation. The
electron number density appears in the Poisson equation. The numerical
formulation of these equations and the method of solution were given in

Section 4, 2,

The numerical routines for solving Equations (49)-(52) have been incor-
porated into program SHEATH, and a fully self-consistent solution was
obtained for the parameters given in Figure 13, The electron and ion

number densities and drift velocities are shown as functions of y. (The

i 2
assumption that - const is seen to be justified and mv, >> kT over most
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of the discharge.) The fact that n<<n, everywhere indicates that the
anode is located within the cathode fall. The situation is indicative of an
obstructed discharge. If the anode is moved back, the electron density
can continue to rise until it equals the positive ion density, at which point

the negative glow begins to form,

As mentioned earlier, the region between the edge of the cathode fall and

the head of the positive column could not be handled by the code in its original
form, because of possible field reversals, The program has since been
modified to allow a change of variables and the use of Equation (55). This has
greatly increased the utility of the code and some typical results will be

described in the following section.
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6,2 The Cathode Fall and Negative Glow

In modeling the negative glow, the code was extended to incorporate a zero field,
drift region, Electron loss mechanisms, such as attachment and recombination,
were added. They do not significantly affect electron kinetics in the high field
region of the cathode fall but are crucial in the negative glow and the transi-
tion into the positive column. Likewise, low energy cross sections, such

as vibrational and rotational excitation in NZ’ have little impact on electrons

within the cathode fall itself and only come into play at low mean energies.

One difficulty which came up in the modeling concerned the presence of

field reversal at the edge of the cathode fall. The electric field falls sharply
away from the cathode surface due to a layer of nearly constant positive space
charge. The electron current density rises exponentially in this region until
the electrons carry nearly all the current in the negative glow. At the edge

of the cathode fall, the electron density is rising much faster than the current
density, since the drift velocity is dropping with the field. Physically speaking,
the secondary electrons produced by the propagating primary beam cannot be
convected out of the low field region fast enough because of their reduced

drift velocity so they pile up.

The difference between positive ion and electron densities determines the slope
of the electric field through Poisson's equation. In the cathode fall region,

the positive ion density is nearly constant and the electron density is negligible,
so the field varies linearly with distance. At the edge of the cathode fall the
electron density rises sharply to values which are comparable with the positive
ion density. This causes the slope of the electric field to soften and perhaps

to go through zero and turn positive. The rate at which electrons pile up at the
boundary between the cathode fall and negative glow then determines the way

in which the electric field stops falling and joins with the low field present in
the negative glow. In particular the field might easily go through zero and
remain negative for a while before the electron density comes up to turn it

around.
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Since current continuity must always be satisfied, any region of field reversal

must have only a limited extent. The low energy electrons and positive ions

I' will follow the field closely, except in cases of very rapid change. The high

' energy electrons, then, are the only thing available to carry the current through i
a field reversal. However, the current density of high energy electrons is
falling monotonically away from the cathode. The balance is made up by an

' increase in secondary electron current. If the field reverses, the secondary

electron drift velocity will follow it very closely resulting in a sharp rise in 4

electron density until it exceeds the ion density. Then the slope of the electric
field goes through zero and the field begins to increase. This reverses the

"‘ whole process and the electron density turns over and approaches the ion 1
E density from above, eventually establishing a uniform field in the positive

column.

The existence of field reversal in the negative glow presents serious computa-

" tional difficulties in modelling the cathode region. In the first place, the

" localized potential well at the edge of the cathode fall results in trapped orbitals
for low energy electrons. Thus, the characteristics no longer terminate on

the electrodes where boundary conditions are established but form closed loops.
These orbitals are populated continuously by ionization which must be balanced

o by recombination or some other loss mechamism, since no electrons can

’ escape by convection. But the recombination rate depends on the positive ion

density, which is not known until the next step in the iteration procedure. In
addition, the presence of a large number of low energy electrons requires a

much finer partitioning of the energy coordinate in this region.

In order to obtain additional understanding of the electron kinetics in the cathode
region before addressing these computational questions, it was decided to run
some typical cases using a field distribution which did not go through zero.

This distribution consisted of two parts: a linearly falling electric field repre-

senting the cathode fall and a zero field region, or drift region, representing

-

58




EEEE—

the negative glow. In the drift region, we changed from an energy to a position
coordinate since tne characteristics are now constant energy surfaces. The
stepsize is chosen as one-fourth of the minimum electron mean free path. The
cross sections are as defined previously, except that we introduce aniso-

tropic scattering. The degree of elastic backscattering was chosen to decrease

exponentially with increasing energy.

3 +
The cross section for dissociative recombination of electrons with Arz was
derived from experimental measurements of the recombination rate as a

function of electron tempe rai:ure.4r9 The following energy dependence was

inferred,
or = 8x 10-16 eV-cmzle

The ionization and recombination rate constants in argon are shown in Figure 14
for an electric field which falls from 900 V/cm/Torr at the cathode to zero
at 0.33 cm Torr and remains zero out to the anode at 0,83 cm Torr. The

ionization rate constant shows the expected behavior, starting from zero when

the electrons reach the ionization potential, then rising to a maximum and falling

with the electric field.

The recombination rate constant drops initially as the primary group acceler-
ates away from the cathode. As they undergo repeated inelastic collisions,
the mean energy begins to decrease and consequently kr increases, Just be-
fore the field goes to zero, ionization virtually disappears and the large group
of electrons near zero energy is accelerated by the remaining electric field.
As the mean energy of this group increases, the recombination rate drops. In
the drift region, the electrons can only lose energy and recombination once
again begins to rise. This behavior is clearly demonstrated in the evolution

of the energy distribution function to be presented in the following.
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The Townsend ionization coefficient and mean electron energy are shown in
Figure 15 for the same conditions as above. The parameter a here is actually
the net ionization coefficient with recombination subtracted out (fractional
ionization assumed to be n+/N = 10-7). Note that recombination becomes
dominant in the negative glow or drift region. The dashed curve represents
the equilibrium ionization coefficient, which is found by letting the electrons

] reach equilibrium at the local electric field strength. It has a maximum at the
cathode surface and goes to zero when the field goes to zero. The actual
ionization coefficient has a tail which extends well into the negative glow, a
direct indication of the nonequilibrium character of the electron distribution
function. The mean energy, € , has the same features as the recombination

rate but in the inverse sense,

The evolution of the electron energy distribution in the cathode fall and drift
region is shown in Figure 16, Note the att#fiuation of the primary group as it
gains energy in the electric field. Just below the primary group is a secondary
group which consists of electrons having undergone one inelastic collision. Then

comes a long tail of intermediate energy secondaries and finally a low energy

group. The low energy secondaries are constantly being produced by the inter-
mediate group until about ¢ = 140 eV when this group virtually disappears. At

f this point the mean energy is relatively low and there are very few electrons

above ionization threshold, but there remains about a ten volt potential drop
to the edge of the cathode fall. Thus, the mean energy once again begins to
rise until the field goes away altogether, This is seen in Figure 16 as the low
energy peak moves out to the inelastic threshold. Those electrons which
cross the threshold and suffer inelastic collisions begin to form a second

peak behind the principal one. This process continues throughout the drift

region,

The electron current and number density are shown in Figure 17, As before,
the current density rises exponentially in the cathode fall and levels off in

the drift region. The current actually falls slightly at the end of the drift
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region due to recombination. The electron density rises more rapidly than

the current density because the drift velocity is falling with the field. In the
zero field region the drift velocity begins rising again because of the presence
of an absorbing anode. If the anode were removed the drift velocity would go
to zero exponentially and, but for the presence of recombination, the electron
density would go to infinity. In reality this would cause the electric field to
increase which would reaccelerate the electrons, bringing their number density
back down to the ion density and bringing the field to a constant value in the

positive column.

A similar case was run in helium with the electric field falling from 225

V/cm/Torr at the cathode to zero at 1. 33 cm Torr and the anode at 2, 83 cm Torr.

This corresponds to the same cathode fall potential of 150 V. The evolution

of the electron energy distribution is shown in Figure 18, The energy distribution
leaving the cathode was taken from the measurements of Hagstromsoand is
somewhat broader than that for argon. The qualitative features of the distribu-
tion are the same. The curve in the lower right hand corner of Figure 18 shows
the experimental distribution of Gill and WebbSItaken near the edge of the cathode
fall. The potential in their case was about 260 V but the general shape of the

distribution is very similar to that calculated here.

With a complete knowledge of the energy distribution as a function of position
many observable features of the cathode region can be derived; for example,
the visible sidelight emission. It is assumed that this emission comes from
electronic levels of the atom which are excited by resonant transitions from
the ground state. Using a general resonant type cross section, the excitation
rate, and hence visible intensity in an optically thin medium, was calculated
as a function of position., This is shown in Figure 19 for helium, All the
visible features in the cathode region of a normal glow are evident, including
the thin cathode dark space, cathode glow, and Crooks dark space. Note the
sharp leading edge and diffuse trailing edge of the negative glow in agreement

with experimental observation.
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The usual pressure scaling in the cathode fall is preserved by the nonequilibrium
formulation presented here. That is, the electric field strength is proportional

to pressure, p, the current density scales as p2 and distances vary inversely

with p. Thus, all the characteristics of the cathode fall presented in Figures 14 to
19 are as valid at 1 atm as at 1 Torr. The inclusion of attachment as an
electron loss mechanism does not destroy this scaling. However, recombination,
which introduces a term quadratic in the charged particle densities, does alter
the similarity laws in the negative glow. At higher pressures, where recom-
bination is more significant, the length of the negative glow is expected to be

reduced from the usual scaling prediction.
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7.0 SHEATH CHARACTE RISTICS

An investigation of the voltage-current characteristics of the cathode sheath
using the computer program SHEATH has shown that there is a range of
parameters where the gross electrical features are approximated by the
Townsend model of ionization with a linearly varying electric field. Devia-
tions occur at very high and very low values of the cathode fall potential,
Vc. As VC increases for a given cathode fall distance, dc' the electrons
are accelerated quickly to energies above the peak of the ionization cross
section and current multiplication in the sheath is reduced. This behavior
is seen in the numerical solution but not in the equilibrium model. At low
values of VC , on the order of several times the ionization potential, the
free-fall region near the cathode, where no ionization takes place, becomes

important. This region is not considered in most equilibrium models.

At intermediate values of VC » near the normal operating conditions,

a simple equilibrium model with linearly varying field has been used to
estimate gas heating in the cathode sheath. Temperature profiles are calcu-
lated and it is found that thermal conduction to the cathode is more important

than convective cooling for moderate Mach number flows.

Tl Linear Field Approximation

It has been observed experimentally and confirmed in numerical simulations
of the cathode fall region that the electric field, and consequently the dis-
charge power density, vary linearly with distance from the cathode. This
is true for both equilibrium30and nonequilibrium models with constant gas
density as well as for a model incorporating the full gas dynamic equations
of a compressible boundary la.yer.1 Using this empirical observation as a
starting point, it is possible to construct a very simple yet accurate picture

of the cathode fall including gas flow.
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First we will derive closed-form expressions for the cathode fall distance
and potential drop as a function of the current and gas pressure. Then, the
power density will be calculated to determine the temperature rise in the
thermal boundary layer under steady-state conditions. This temperature
rise corresponds to a gas density defect at the entrance to the positive

column which can lead to thermal instabilities in the plasma.44

The electron current density in the cathode fall satisfies the following con-

tinuity equation,

%j

- (71)
oy

= _aje
where Q is Townsend's first ionization coefficient and y is the distance from
the cathode. The processes of electron loss, such as attachment and re-

combination, are negligible compared to ionization in the cathode fall. The

solution of Equation (71) is
S e ¢ y
o = dgo exp[£Y aty)ay] (72)

where jeo is the electron current density leaving the cathode.

In Townsend's original experiments, electrons produced by illumination of

the cathode were allowed to drift in a uniform electric field and the current

growth was measured as a function of distance. If the electrode separation
is not too small, the electrons spend most of their time in equilibrium between
the field, E, and the gas density, N, and « depends only on the ratio E/N,

This dependence has the form

E\._
0.( Po) = Ap_ exp(- BpolE) (73)

where p0 is the pressure reduced to 0°C and is proportional to N, A and B

are constants.
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In the cathode fall region, the electric field and gas density are changing

so rapidly with position that the electrons never reach equilibrium, and

it is not possible to relate & to any local variable. (It has been suggested45
that the mean energy, €, and through it a , may be expressed as functions

of the average field, V(y)/y. This approach was later modified39to account
for the free-flight region near the cathode. ) However, the coefficient a
appearsin Equation (72) under an integral over position, In the present study,
it has been found that the use of Equation (73) in (72) with a linear field de-
pendence gives an accurate prediction of the electron current growth in the
cathode fall. In other words, the expression for a(E/po) may not apply

locally, but in an integral sense, over the whole region, it has some validity.

If the electric field is given by the expression,
¥
E =E (1 - (74)
(y) 0( d¢ )

where Eo is the electric field at the cathode and d is defined as the cathode
C

fall distance, then

. d
j(d) C - = i
e c _ = % -BE, B_ B 75
In ; f a(y)dy Adc,:e °- B, (E )] (75)
eo o] o Qo

where El is the exponential integral function, A = Ap and B = Bp .
o o

The electron and positive ion current densities at the cathode are related

by

T T R P Y PSP T, S

Jou =~ #3

it (76)

PP TP Vps T

where 7is the secondary electron emission coefficient. At the edge of the

cathode fall, the positive ion current density is negligible so |

je(dc) =) (77)

21
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and In[j (d )/j ]=1In (1 +1/7). The cathode fall distance can therefore
Je'%'eo

be written from Equation (75) as

In(l +1/7) 78)
d = = B (
- -B/E D B |
o o

The current density can be found from Poisson's equation,

A5 - B vn (79)

(BE)z-_e_n= s wigros. WAEE (80)
Vi

where v, is the positive ion drift velocity.

In the cathode fall region, the positive ion mobility is limited by charge

exchange. If the cross section for this process is nearly constant 'chen43

E
e 2
P,
If we now define
Eo
dc 3 BE) (82)
dy s
then from Equation (80) 3/2
; (1+7) E:o
_.l? = e k, = (83)
Po ¢ 1:’o c l:)o

This expression is valid for any field dependence, not just the linear depen-
dence of Equation (74). Equation (83) agrees very well with experimental

observations in helium at 1 Torr and with numerical predici:ions.30
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We now have the current density and cathode fall distance expressed in terms

- With the
cathode fall potential given by Vc =1/2 Eo dc, we can plot podc and Vc as

of the physical constants, A, B, and ¥, and the parameter, E

functions of j/po2 (Figure 20), The minimum in the cathode fall potential is

defined as the normal operating condition, with the properties

n 3/2 1+ Y
—_— = k —

5.2 0.57 AB R e (84)
B

\" = 3 = In(l +1/7) (85)
n A

3.7 ]

= == 1

P, dn . n(l +1/7) (86)

These results for constant temperature are presented in many standard texts

on gaseous electronics,

For a discharge in argon with an iron cathode, ¥ = 0,04, A = 14 cm-l Torr-1
B=180V cm-l Torr-l, and k+ =8.25 x 103 cm3/2 Torrl/2 V-I/Z s-l.
In this case

’

J

nz I T T Torr_
pO

V = 126V

n

pd = 0.8 cm Torr
on

These values are in close agreement with the numerical calculations of Ward30
even though he used a different expression for (E/po). However, the

normal current density is considerably low and the distance somewhat high

in comparison with experiments. (The experimental values can be obtained

with a different choice of physical constants. )
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Tu Gas Heating in the Cathode Sheath

The reduced pressure appearing in Equation (83) is measured at the
cathode surface. Because of gas heating in the cathode fall region, P, may
be considerably different from the pressure in the positive column. The
temperature rise in the cathode fall can be determined from a knowledge of
the power distribution and the thermal conductivity of the gas. Since the
current density is independent of position, the discharge power density, is

given by

Sy )
P, Po(l 3 ) (87)

C

where Po = on . Essentially all of the power dissipated in the cathode fall
goes into heating the positive jons which in turn heat the gas through charge
transfer collisions. Thus, Equation (87) can be considered as the rate of

heat addition to the gas.

In a discharge channel with flow parallel to the cathode surface, a boundary
layer is established due to the finite viscosity of the medium. The gas
velocity in the boundary layer goes from zero at the cathode to a maximum
value in the free stream. For gas flows near standard density » £, the
thickness of this layer, 6*, is much greater than the normal cathode fall
distance. and increases in the downstream direction, For example, in the
case described in Reference (1) with a free stream density, P, = 0. 3ps,

the boundary layer displacement thickness was 0.2 cm at a distance 10 cm

downstream of the nozzle. The cathode fall thickness was found to be 0,007 cm.

Thus, the cathode fall is well within the laminar sublayer, and for subsonic
flows at least, the effects of convective heat transfer in this region may be

neglected.

We now define the heat conduction problem by considering a solid cathode
of thickness t interfacing the gas at y = 0. The temperature of the back

face of the cathode has the constant value T° at y = -t. Heat addition to

15
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the gas is defined by Equation (87) and the heat flux into the stream at
y = dc is represented by q The thermal conductivity of the gas is assumed

to have a power law dependence on temperature, i.e.

a
K = Ko(TT ) (88)
g o

where To is some reference temperature, here taken to be the temperature

at y = -t. The gas temperature in the cathode fall satisfies the equation,

d 3T o
oy <Kg(T) 'a—y—) + Q(y)=0 (89)

where é(y) = Pd(y). In the cathode itself

xaT=0 (90)

c ay2

where Ko the thermal conductivity of the cathode material, is assumed

constant. The temperature distribution is then,
g = (1 & . ) +
K (T -T) (? Q d_-q )+t (91)

for =t < y< 0 and
T 3
% To [fz\'* (Tg\l* a3 2 s
1 +a To To T Mo 6dc 2 7Qodc-qc y

for 0 <y <d., where

1
x (T, -T) = (—2- 60 d_ - qc) L (93)
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The temperature at the edge of the cathode fall, Tc’ is specified by Equa-
tion (92) with y = dc. The heat flux into the free stream is given by the
usual expressions for local heat flux in laminar or turbulent flows over

heated flat plates.46 i. e,

Laminar: qc(x) =0,332 k Pl/3 Rx”

2(T-T)"‘l— (94a)
¢ a x

Turbulent:  q_(x) = 0,0288 k Rx4/

(T T) — (94b)
Here the thermal conductivity, k, was assumed constant, P is the dimension-
less Prandtl number, Rx the Reynold's number (Ux/v), and Ta =T + VP %Li-
is the adiabatic wall temperature. In both cases, the heat flux increases
with TC and decreases with x, the distance measured from the leading edge.
However, for laminar flow (Ry < 5 x 105) qc(x) ~x-l/2, while for turbulent

flow (Rx> 5 x 105) qc(x) = x-l/s,

An estimate will now be made of the relative importance of - in determining
the temperature distribution in the cathode fall, For a turbulent flow with
a=1and Ta = To , the temperature aty = dc is found from Equation (22) to
be,

d
K (T -T)<l+0.0058R4/5 —°>=—1—Q a:* (95)
o ¢ o x X 6 o c

The temperature without flow is obtained by setting R, = 0. Thus convectivz
625V X \1/4
e . Wh =

dc \de ) enU=U,,

the temperature at the edge of the cathode fall is reduced by a factor of two.

cooling can be neglected when U< U, =

The critical Mach number, M_, is given by

1/4
Y-1 2 625 X
M (1 + =
>.<( 2 M*) <, pW dc (dc ) (96)

where p and c_ are the free stream viscosity and sound speed, respectively,

and P, = P (p°/760 Torr) is the gas density at the wall.
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For nitrogen at T = 300 °K this condition becomes

5/4
Lk i 1/4
M, (1 + L2wm, ) - 34.5 (g% (97)

b3

with Py in amagat and x in cm. The critical Mach number at x = 10 cm

in N2 at standard density is M, = 5. 6.

The temperature distribution defined by Equation (92) agrees very well with *
the numerical results of Reference (1). When convective cooling is ignored :

the temperature rise in the cathode fall region is from Equatiaon (92).

KOTO T l+a -& l+a =__1_6 dz .
1 +a To . To 6 o ¢ (98)

Here we see the importance of cooling the cathode in order to minimize the

density defect caused by gas heating. However, cooling the cathode to a

s

temperature much below T_ can have only a limited effect if AT > Ty -

The boundary layer on a flat plate makes a transition from laminar to turbu-

lent flow at a Reynold's number, 49
Umx 5
X 1%

where Um is the free-stream velocity, x is the distance from the leading
edge of the plate and v is the kinematic viscosity. In nitrogen at STP

2
v=0,133 cm /sec, and the transition occurs at about

1.2 cm
. lZzcom 100
Xerit M ( )
vhere M = U /c 1is the free-stream Mach number., Forx>x . momen-
® ® crit,
turm and heat transfer in the boundary layer are dominated by turbulent
4
«ing. The thickness of the layer is
-0.2
5 = 0.37TxR_ (101)
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corresponding to the point at which the longitudinal velocity reaches 99 per-
0.8

cent of its free-stream value. For a given velocity, § grows as x until

the entire flow channel is turbulent,

The normal thickness of the cathode dark space in a glow discharge is

typicallysz

d p 0.3 - 1.3 cm Torr (102)
o

n

where po is the reduced pressure at the cathode surface, i.e.,

273 K
20 T B TH (103)
o
{ 3 : ; . 52
In a nitrogen discharge at STP with an iron cathode
= .42
dn P, 0 cm Torr (104)
A a = B 107 em.

On the other hand, we see from Equation (101) that =+ > 0,036 ¢cm/M in the
turbulent regime. Thus, under normal conditions at atmospheric pressure,

the cathode sheath is embedded well within the turbulent boundary layer.

For a given temperature the kinematic viscosity is inversely proportional to

) -0.2 : -1
pressure, so f varies as p : . On the other hand, dn varies as p . Thus,
at low pressure, the ratio of dn to £ is small only at very large x, but in

this case the transition to turbulence also occurs at larger values of x.

Written in terms of X .. we have
crit

0.8
d X it
- - 0.015 (C—;‘) M (105)

where the constant is independent of pressure,




In the region very close to the wall, the velocities are so small that viscous
forces continue to dominate over inertia forces, This is known as the laminar

4
sublayer. The thickness of this layer on a flat plate is 6

5 = 29.5x Rx‘0-9 (106)

0
4 BYOWS as x : 1, or much more slowly than s, Using
Equation (100) in Equation (106) we see that 6£ 2 4.2x% 10.4 cm/M in nitrogen,

Thus, for subsonic flows, the normal cathode dark space and laminar sublayer

For a given velocity, ¢

have roughly the same extent. The pressure scaling of P is as p-o' 9, simi-

lar to dn' Written in terms of X it for nitrogen at 0°C, we have

dn xcrit
—_ = 1.3 (—-) M (107)

where once again the constant is independent of pressure. For argon at 0°C,

it becomes 1.2, while for helium at the same temperature, itis 0.5,

In the laminar region, the transport of heat normal to the flow takes place by
conduction. This can be seen by introducing the dimensionless form of the

energy equation with constant fluid properties

0 0 2 2
3h 3h™ 1 3T 3 T E
u—'ax + v——:JY = PR ( >+ 2) + R 3+ Q (108)
x \ax Ay x
9 vc
where &= g; is the 2‘viscous dissipation function, P = p —KR is the Prandtl
U
number, and E = E—(g;ﬂ-— is the Eckert number.
p o

In the definitions above, cp is the heat capacity per unit mass, K is the thermal
conductivity, and (.;T)o is the difference between the wall temperature and the
maximum temperature in the boundary layer. The lengths in Equation (108)

are normalized to x and the velocities to U,. The rate of heat addition is




normalized as follows:*
- 6 -
Q -To U BT (109)
p ® o
The orders of magnitude of the normalized velocities in Equation (108) are

found from the solution of the laminar boundary layer equations to be
and 8

The derivatives of ho and T with respect to x are of order 1. The derivatives
with respect to y are estimated as follows: Since the heat addition takes place
within a sheath of thickness, d, the temperature (and ho) will reach a maxi-

mum value at > such that 0 < ymax <d, Thus, in the region 0 < y < ym

ax
< X
3y —  d
and > >
. T x_
7, AN
3y d

Later we will see that T d and these approximations are valid through-

out the sheath,

Now, replacing the terms in Equation (108) with their orders of magnitude,

we have

& 2 2
"4 1 X E X :
1 + o (l+ ) + Rx +Q (110)

PR 2 2
X d ‘z

The terms on the left in Equation (110) are both of order unity for the normal
cathode sheath, The first term on the right is small compared to the second,
i.e., there is little or no heat flux along the surface. Using Equations (101)

and (105), the second term becomes

17 ( x
2 x .
PM crit

where P ~ 1 for gases, So for subsonic flow and x >x

crit’ the convective
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terms on the left of Equation (108) are negligible compared to the conductive
term on the right, The ratio of viscous heating to thermal conduction is of

the order FE, which is small when .
2

U
i)
(AT), >> = (111)
P
I’quating the remaining two terms in Equation (110) we find, for P = 1,
dZ
A Q 5
(L I‘)O T (112)

In the catliode sheath, the principal heat addition is by collisions with posi -
tive ions, which account for most of the current in a cold cathode sheath,
Thus, ?

Q ~ jE (113)
where j is the current density and E the electric field. Still dealing in orders

of magnitude, we can rewrite Equation (112) as

vd
(AT)y ~ J % (114)

where V = Ed is the drop in potential across the sheath. Typical values of
(AT)0 for various gases on an iron cathode are shown in Table I at 1 Torr

and 300°K.

Table I
He HZ Ar N2
(AT)0 0.26 8.7 18.5 139, (°K)

These were obtained by using normal values of current density, potential and

sheath thickness,
Now that we have an equation describing heat dissipation in the sheath, we

can construct a model which couples the field, the plasma, and the gas in a

self -consistent manner. In order to examine the effects of gas density
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variations within the sheath on the sheath characteristics, we begin with a
simple model which treats the electrons as being in equilibrium with the
field, It has been shown in Section 6 that this is not a good approximation

in treating the fine details of sheath structure such as electron density oscil -
lations near the cathode. However, for determining the electric field vari-
ation with position and the rate of heat addition to the gas, it is quite an

adequate approximation in the vicinity of the normal operating point,

The equations to be solved for the steady state are simply

Aj

(&)

= S+aj -rnn (115)
3y e e e +
Je g e NS
I = S S S
i = 2 oon) (116)
Yy € + e
(8]
- u =y
e € o \P,
1/2
v, L PEG (L)
+ po
2 fo1) 2 i E < 0O (117)
- IX —\ + s
3y >y) I

The Townsend ionization coefficient o is represented by

Apo exp (- Bpo/E)




The various constants for nitrogen are

A = 12 Torzr
-1 -1
B = 342V cm Torr
2 - e
B P, = 2.8 x 105 cm Torr V ! sec 1
k+ = 8 x 103 cm3/2 Torrl/2 V-I/z sec-1
-4 T 0.77 R |
(T = 2.6 x 10 (300°K) W cm K
r, = 8 x 10.7 cm3 se<:-1

X

The numerical integration is started at the edge of the sheath, where n ~n,
and proceeds until the boundary conditions j+ = YJe and T = To are satisfied
at the cathode surface, Since the two conditions must be satisfied simulta-
neously, a '"'shooting'' technique is employed, where the initial temperature

is varied until convergence is achieved.

With regard to pressure scaling, we make the following observations, In

the absence of recombination and gas heating, the similarity variables (i.e.,
variables which make the system of equations independent of pressure) are
S/p3, j/pz, E/p, and yp. Using these variables, the recombination term in
Equation (115) and the heat addition term in Equation (117) are directly pro-
portional to pressure. Recombination is only significant in the negative glow
and positive column and does not affect the sheath characteristics appreciably.
However, as pointed out in the last section, gas heating is very important

even at low pressures, Thus, the usual pressure scaling no longer holds.

If kK were constant, then temperature changes in the cathode sheath would
scale directly with pressure, Since K increases with T, the actual scaling
should be less than linear with pressure. However, the heating term is
modified by the variation of P, in the sheath and it will be shown below that

the effects of variable x and variable P, tend to offset one another, such




that AT still increases directly with pressure, This fact represents the

major stumbling block to operating cold cathode discharges at high pressure.

The electric field in the sheath is plotted in Figure 21 as a function of position
for three different pressures. Scaling variables are used so that, if p were
constant, all three curves would coincide. The deviations are minor for pres-
sures up to 300 Torr. Note in particular that E/p at the cathode surface is
practically constant, The cathode fall potential is only slightly higher at

300 Torr than at 10 Torr, but increases significantly at 1 atm.

A The temperature distribution in the sheath is shown in Figure 22. The flow

velocity is assumed to be small so that

AT

— ~ 0 118

3y |y=d G
This is also true under static conditions if the electrode spacing is large

compared to the sheath dimension. Notice that the width of the thermal

boundary layer is less than the cathode fall distance and that the tempera-
ture reaches its maximum value well within the sheath, At 300 Torr, the
t temperature at the plasma-sheath boundary is 950°K and the gas density is

; only one third of its free stream value., In an e-beam sustained device

i where the electric field is determined by the applied voltage, the ]EI/]:)o or
} E/N at the edge of the sheath will be three times as high as in the core flow.
Thus, if E/N must be maintained below a critical value where volume ion-
ization begins to compete with the e -beam source, the temperature in the
boundary layer presents a severe limitation on the applied voltage, and hence

the power density, which can be achieved before instabilities occur,

In the transient case, where a voltage pulse is applied at t = 0, the tempera-
t ture distributions of Figure 22 will take some time to develop. There are

two time scales of importance here: The time required to heat the gas in
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Figure 21 Electric Field in Cathode Sheath with Gas Heating
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the sheath, Tl' and the time it takes a pressure disturbance to propagate

across the sheath, T,. The first characteristic time is approximately

o o POy Ty (119)
2 o
jE

where . is the specific heat per unit mass at constant volume. Taking for

nitrogen pcv = 3 Nk and using Equation (114), we have

3 Nk .2
e d (120)

where N is the initial gas density. In nitrogen at STP and normal current

density on an iron cathode,

T  ~ 0.65 ysec

1
This value scales as p-l, so that a 1 Torr ‘Tl ~ 0.5 msec,
The second characteristic time is just
d
T = — 2
2 o (121)

S : -1 .
Again in nitrogen at STP, Ty o 0.017 usec. This also scales as p . Since
the pressure in the sheath equilibrates on a time scale corresponding to Ty
which is much less than '7'1, the assumption of constant pressure applies to

some degree in the transient regime as well as in steady state.

It should be pointed out here that if the discharge is operated at current den-
sities greater than jn, then d is less than dn’ and both ’1 and ‘1'2 will be smaller
than their normal values. Attempts to operate at current densities less than

jn will result in bunching of the current at the cathode such that the local

j= jn. This is a two-dimensional effect which has not been treated under the

present contract due to time limitations,

The temperature rise across the sheath is plotted in Figure 23 as a function

of pressure. Note the nearly linear dependence as suggested earlier. The
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appearcace of these temperature increments and associated density defects
at the edge of the cathode sheath on time scales as defined above must have
serious consequences for the stability of discharge devices at high pressure.
Although the adiabatic propagation of density disturbances at the local sound
speed is too slow to account for many of the observed instabilities in TEA
discharges and e -beam sustained devices, these disturbances may be driven
by locally enhanced ionization and gas heating at much greater velocities,
Therefore, the coupled field, plasma, and gas equations must be treated self-
consistently and time -dependently in order to deal with this situation. In
addition to longitudinal instabilities, there are other instabilities resulting
from transverse nonuniformities in the electric field or external ionization
which cannot be dealt with under the present framework but which must be

considered in a general stability analysis,

The full temperature distribution in the cathode sheath and boundary layer is
shown in Figure 24 for three different Mach numbers. The sheath dimension
has been expanded relative to the boundary layer thickness in order not to
obscure the detail in this region, The temperature and heat flux at the sheath -
boundary layer interface are continuous. Note the minimal cooling provided
by low Mach number flows. The relative density change across the boundary
is actually greater at higher Mach numbers due to the adiabatic cooling of

the core flow.
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Figure 24 Temperature Distribution in the Cathode Sheath-Boundary Layer
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8.0 STABILITY ANALYSIS

The temperature and electric field at the cathode surface are critical in
determining the stability of the discharge. If thermally enhanced electron
emission becomes significant, the uniform glow collapses into an arc. This
occurrence can be forestalled by proper cooling and conditioning of the
cathode. For a given pressure and electrode configuration, however, there
exists a maximum current density for stable operation. Electrode cooling

and thermal stability are covered in Section 8, 1.

The effects of field tailoring and auxiliary ionization on sheath characteris-
tics and discharge stability are examined in Section 8.2. Itis found that
field tailoring in e -beam sustained devices is effective in countering thermal
and chemical changes which occur in the flow direction. These changes
occur principally in the positive column, but they can modify the current
density distribution which affects the sheath, Auxiliary ionization typically
has a negligible effect on sheath characteristics, but it can lead to the rmal
instabilities at the edge of the cathode fall which propagate into the positive

column,

8.1 Electrode Cooling and Thermal Stability

In the last section, it was assumed that the cathode surface was maintained
at a temperature To = 300°K. In practice, the cathode must be cooled on
the side away from the discharge, for example, by passing a fluid with high
heat capacity over the surface. The temperature at the cathode -gas inter-
face then depends upon the thermal flux incident from the discharge. The
effect of raising the temperature at the cathode surface is to decrease the
density of adjacent gas and, if the current density is held constant, to in-
crease the thermal flux. This process leads to an instability in which the

cathode temperature and electric field at the surface increase without bound,
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The combination of increasing temperature and electric field eventually
changes the electron emission process from one which is independent of T

to one which increases with T, e.g., thermionic field emission. When the
emission of electrons is an increasing function of T, the slope of the voltage -
current characteristic for the sheath goes negative and the discharge col -
lapses into an arc. In the following paragraphs we will show that this process
is inevitable once the local current density is raised above a critical value

which depends on pressure.

At low temperature, the principal mechanisms for emission of electrons
from the cathode are ion impact and photoemission. Under ion impact, the

electron current at the cathode is related to the ion current by

(122)

where Y, is the electron yield per ion. The factor v, is a function of ion
species and energy as well as surface material and condition, In the high
field region of the cathode sheath the ion species is typically the singly ion-

ized component of the parent gas with an average energy
€ ~ E/NQ (123)

where Q is the cross section for symmetric charge exchange, In argon with
E_/p ~ 1000V em! Torrhl, ¢, ~ 5eV and in helium with E_/p_~230 Vem™!
Torr-}, €; ~ 2.5 eV, The yields for these ions on atomically clean tungsten
are®3 Y (Ar+) = 0.10 and v, (He+) = 0,29. On tungsten covered with a mono -
layer of NZ' Y; (Ar+) = 0,035 and Yi (He+) = 0,17. Thus the treatment of the

surface is critical in determining accurate sheath characteristics.
In addition to ions incident on the cathode surface there may also be photons

with sufficient energy to eject an electron. The threshold frequency for photo -

emission, uoi is defined by

hw, = o (124)
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where ¢ is the work function of the material. This ranges from 2 eV to 5 eV
for most metals. An expression for the photoelectric current was derived

by Fowler54 &
) [h(u-vo)]
i ok =0 (6 6[ I(v)x ET dy (125)

where C is a constant that depends on the properties of the solid, I is the
incident radiation intensity, and X is a universal function which Fowler

expressed in series form.

The intensity, I(v), is dependent on the gas and the operating conditions and

geometry of the discharge. In general, we can write
I(v) = n(v, E)j EL(v) (126)

where 7 is the efficiency for producing photons of frequency v in the discharge
and £ is a characteristic length., If the radiation is not trapped by the gas,
then £ is defined by the geometry of the discharge region. If there is signifi-

cant trapping, then £ is related to the trapping distance.

For a given gas and applied electric field, the photoelectric current is

directly proportional to j, i.e.,

= Y
Je, ph ph J (127)
where th is a function of E and various geometrical factors., Now we can
relate the total electron current to the ion current at the cathode surface by
- th
and define an effective Y
A
1 - th

wh ich includes both ion and photon processes., In a gas where the uv emission
comes principally from transitions between excited or ionic states, there is

little trapping and Y may be much greater than v;.
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The cathode fall potential at a given current density, and hence the heat

loading in the sheath, is a sensitive function of Y. In particular, the normal L
current density increases with Y. Therefore the choice of gas and cathode

material and the treatment of the cathode surface can have a significant

effect on the operating characteristics of the discharge.

The heat flux to the surface of the cathode is just

T = 3\ 12
R L i

For a given Y the cathode fall potential, V, is a function of ng jTi’/pZ,
where Tw is the temperature at the cathode surface. If the cathode thick-
ness is t and the back face is held to a temperature, To’ then Tw is given

by

KC .
T VBl JVER ) (130)

where K. is the thermal conductivity of the cathode. Solving Equation (30)

for j in terms of the similarity parameter £, we have

£ 1/2 g 1/2
el SR w 0
i g V(E) Nl

The quantity in brackets has an absolute maxirnum as a function of gw
Therefore, above a certain value of j there exists no steady-state gw or Tw.
At this critical current density, the temperature and electric field at the 1

cathode continue to increase until arcing occurs. q

From the form of Equation (131) it is clear that arcing may be forestalled
by effective cooling, In particular, the ratio KC/t should be maximized by
using thin, highly conductive cathodes., It is also desirable to use gases

with low normal current densities so that the heat loading in the sheath is

minimized. By using very clean, water-cooled, metal electrodes, a normal
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glow can be maintained in pure hydrogen at pressures as high as 13 atm

and currents as high as 14 amps.

The cathode fall potential as a function of reduced current density in nitrogen
is shown in Figure 25 for a number of pressures. The cathode is 1 cm thick
aluminum, cooled on the back face to 300°K. The curves are shifted to the
left at high pressures because of the reduced gas density at the cathode sur-
face. At the critical current density for each pressure, the slope of the
curves goes to infinity, The circles indicate the points where the wall tem-
perature reaches the melting point for aluminum. Obviously the emission
process will become thermionic before then and the discharge will collapse
into an arc, At pressures above one atmosphere, this transition occurs

below the normal current density and the discharge always arcs.

8.2 Field Tailoring and Auxiliary Ionization

In an electric discharge with transverse gas flow, significant heating and
chemical reaction may occur during transit through the device. The change
in gas density and chemical composition will alter the ratio between external
and volume ionization and may cause instabilities to occur. One technique
for counteracting this effect would be to vary the electric field in the flow
direction by segmenting the electrodes. This approach would also allow
individual ballasting or current control of each segment which would tend to

maintain a uniform current distribution.

The changes which take place as the gas flows through the discharge occur
principally in the positive column. Since the velocity in the sheath region
is small, there is little communication between upstream and downstream
segments, However, the gas heating which occurs in the sheath causes the
thermal boundary layer to grow at a more rapid rate. : The expansion of
this hot, turbulent gas into the positive column together with the normal

bulk heating of the core flow leads to a severe reduction of the local gas
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density and, for constant field, a corresponding increase in E/N. Most

e -beam sustained discharges are operated at E/Ns limited by some form of
ionization or thermal instability. An E/N which is allowed to increase in
the flow direction, then, restricts the power density which can be achieved
in these devices. If the electric field is gradually reduced in the downstream |
direction, then theoretically E/N can be kept constant and the limiting power

density increased.

The changes which occur in the plasma are communicated to the sheath through
the local current density. The sheath does not see the electric field in the ,
L positive column or the gas density directly. The cathode sheath merely has \
to supply the current required by the discharge, which is determined by the |
conductivity in the positive column, If the local conductivity of the discharge
drops too low, then the current density required from the cathode may exceed
the maximum value discussed in the last section and the glow will collapse.
On the other hand, there are instabilities which occur in the positive column

which lead to constriction of the column even with an extended cathode glow.

The presence of external ionization also affects the cathode sheath only in-
directly. The level of external ionization is typically small compared to

volume ionization in the fall region. An analysis such as that in Section 7.2,

including an external source term in the electron continuity equation, indicates

i

that the electric field near the cathode is independent of the source. In the

transition to the positive column, however, the electric field is higher than 4

with no external ionization. This high field in a region where the gas density

is reduced by heating does strengthen the possibility of thermal instabilities.




9.0 CONCLUSIONS

The research under this contract has answered many questions relating to
basic processes in the plasma sheath. In particular, the effects of nonequi-
librium energy distributions and gas heating on sheath characteristics and
stability have been addressed. However, the present findings do not close
the book on the study of interactions between sheath and plasma in high pres-

sure discharges and ionized gas flows.

Two particular aspects of the sheath problem require further study. One is
the treatment of the cathode surface. The potential drop across the cathode
sheath, and hence the heat loading in this region, can be reduced by increas-
ing the effective electron yield. This can be accomplished by the use of
oxides as dielectric layers or the use of helium as a gas layer above

the surface. Furthermore, the tendency of the positive column to constrict
and eventually collapse at high pressures may be averted by employing re -
strictive or semiconducting cathode materials to provide localized ballasting.
The resistive cathode would also allow tailoring the field without alternating
metallic and dielectric strips which result in strong transverse fields at the

surface,

The other area needing more study is the sheath-plasma interface. Under
the present contract it was not possible to obtain a smooth, self-consistent
field transition in this region using the nonequilibrium code and the equilib-
rium model is questionable in the operating regime where stability becomes
a factor. The problem can be solved by modifying the iteration scheme
used to obtain a self-consistent field. This would allow the calculations to
be extended to the positive column where the field is uniform and boundary

conditions can be established without the presence of an anode.
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APPENDIX
Asymptotic Solutions

The collisional Boltzmann equation for electrons suffering elastic and in-
elastic collisions is not amenable to exact, closed-form solution except

in the case of constant collision frequency., In the general case, numerical
methods are employed using tabulated experimental cross sections. In order
to make the solution tractable, it has usually been necessary to make some
approximation in the angular dependence of the velocity distribution function.
The most common technique is to expand this function in a series of Legendre
polynomials, which is then truncated after two terms, This approximation,
which has been labelled Pl, is very accurate at moderate electric field
strengths in cases where the inelastic cross sections are not too large and
the elastic cross section is isotropic. In the present work, we have used

an approximation where electrons moving with the field are placed in one
group and electrons moving against the field in another. This technique,which
will be called G2, is most accurate at high field strengths where high energy

electrons are scattered predominantly in the forward or backward directions.

In order to examine quantitatively the accuracy of these and other angular
approximations, we now consider a situation where the Boltzmann equation

has a closed form solution in the limit of high electron energy. The cross sections
are assumed to be constant and isotropic. The total inelastic cross section

is denoted by Qh and the total elastic cross section by Qe. The Boltzmann

equation can then be written,

/

C—E-cose(% %I;t): -Qf+fOQC+'£—:i}l IO(€+¢h)Qh(€+fh) (1)
where Q = QC + Qh and the other symbols are defined as in Section 4. 1.
Along the characteristic,where ¢+ £ is equal to the maximum energy of
electrons emitted by the cathode, there are no in-scatterwed electrons and the
last term in Eq. (1) vanishes., (This term is also negligible in the homo-
geneous case when E/N is small or Q is large.) Considering f as an explicit

function of £ alone, we can write Eq., (1) as,
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E of
— —_ = +
e [ cos® 3t Qf fer (2)
The partial derivative in (2) can be expressed in the coordinate system
2
(€, x) where € = €/cos 6 is the total energy and x = cos 8, i.e.
of 1 -x'2 of

of
— = —
caa A€ = Q€ 2€ ox (3)

At high energies the second term on the right is negligible compared to the
first except in a small angular range around x = 0, Therefore, we can write

Eq. (2) in the asymptotic limit as,
1

Q
of e f
e N
X34 f 20 : f dx (4)

where u = NQ€/eE,

The solution of this equation has the form

f(u, x) = g(u) h(x)

where the functions g and h satisfy

1 og _
5 o (5a)
and
1
Qe /'
_— / hdx = (1-ax)h (5b)

The constant 0 must be positive to meet the boundary condition, f -+ 0,

at infinity,

The solution of Eq, (5) is

glu) = e-au
and Qe/Q
h(x) = l1 -ax
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1
1
with the condition that }:f hdx = 1, This last equality fixes O so that
=1
there is a single, well-defined function describing the electron energy dis-
tribution,
g .
f(u,x) = £ e (6)
1 -ax

Q
+a
with O given by a = 25 In (i cx)' Thus, in the asymptotic limit, the
- E/N
distribution approaches a Maxwellian form with temperature Te = —e—a,Q—

The angular dependence exhibits a peak in the forward direction which becomes

sharper as 0 - 1. The dependence of @ on Qh/Qe is given in Table I.

Table I

Qh/Q 0.1 0.3 1.0 10. [ve}
a 0.5030 0.7521 0.958 0.999 1
fl/fo 0.542 0.921 1.566 2. 1027 3
fz/fo 0.195 0,561 1,586 4,318 5
f3/fo 0. 060 0, 305 1,427 5.834 7

f f .1 L] . 5
4/ y 0,156 1,211 7.295 9
fs/fo 0,073 0.987 8.717 11
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Another method of solving Eq. (4) would be to multiply by successive Legendre

polynomials and integrate over x to obtain the follewing series of equations,

of Q

3 odu o Q o (7a)
of of

2 2 o)

= £+ 2 4+ =

i il R {75
of of

3 3 2 1

—_— e = — =

3 + 3 3 fZ O o = o (7¢)

where the functions fo, fl, fz, « « o are defined by the expansion

f(u, x) =QE fi (u) Pc (x). If the series is approximated by the first two terms,
=0

i, e., fﬂ =0 for ¢ 22, Then the solution of (7) is given by,
-0.u -alu
f = e and f. = Qe
o 1 1

where a, =V3 Qh/Q.

This is the Pl approximation cominonly used to solve the Boltzmann equation

in the general case of nonconstant cross sections. Once again the solution is

Maxwellian with temperature Te = ef/lQ\I the value of 01 approaches the exact
1

result, @, at small values of Qh/Qe' In the limit of large inelastic cross
section, al goes toV 3 while @ goes to 1, Thus, the temperature in the

tail of the distribution may be off by as much as a factor of V 3 .
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If three terms are retained in the angular expansion of f, the solution of (7))

is given by

-Q a -Q
f = e ' £. 7 . 2"
o TLRICTY T T
15 %2
2
a =
Ew - ; a,u
2 3 1. 4 2
15 2
3 Qh/Q
where a_ = . This is the P2 approximation.
2 4
I %= Qh/Q

Note that a, approaches V 5/3 for large Qh/Qe'

In order to see how well these approximations represent the exact distribution, |
we have expanded the function in Eq. (6) in a Legendre series. The coefficients |
of this series are given in Table I for a number of values of Qh/Qe. The
coefficients of the truncated expansions are given in Table II along with the
appropriate 0 values. As the inelastic cross section increases relative to Qe’
more terms are required in the angular expansion to adequately represent the
distribution function. This is because the distribution is becoming more and
more peaked in the forward direction. In the limit as Qh - o, the angular

distribution approaches a delta function which has the Legendre coefficients

N 3By i vy BEE By
Table II

Q,/Q, 0.1 0.3 1.0

Pl P2 Pl P2 P1 P2
%12 0. 522 0.516 0.832 0.764 1.224 1. 035
£, /£, 0,522 0. 541 0. 832 0. 905 1.224 1. 449
1. /1 0,182 0. 461 1. 000 *
2 o
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Before leaving the angular expansion technique, it is interesting to compare
the infinite series solution with the exact solution obtained by separation of

variables. By a process of successive substitution, it can be shown that the
equations (7) are satisfied by functions fy which have a common exponential

factor exp(-a,u), where Q, is given by the continued fraction,

Q 3 - 2 2/30”
} ——
E 9 o 35 0
= e
[ 4 4/70a,
R O e
9 1"- e o
In this expression the two series are
1 2 3 4 n
’ ’ ’ ’
3 5 7 9 2n +1
2 3 4 n
o e T e E e A 2n - 1

The value of ay found in this way is equal to the exact value, a , given pre-
viously. Therefore, the solution using the Legendre expansion approaches the

exact asymptotic solution as more and more terms are included.

Another very simplified approach in dealing with angular velocity distributions
is to divide the electrons into two groups. One moving with the electric field
and the other moving against it. This type of a distribution is most nearly
realized in the cold cathode region of a glow discharge where the scattering

of high energy electrons is predominantly forward or backward and the inelastic
cross sections are comparable to the elastic. This is also precisely the regime
in which the Legendre expansion has the most trouble converging, In this case,

the Boltzmann equation is written as follows,




o s

N 3¢ - -(Q; + Qh)f+ + Q;f- (8a)
eE of_ _ = <
T e - - Qef+ + (Qe + Qh)f- (8b)

where Q; is the cross section for elastic backscattering. For equal forward
and backward scattering, Q; = QeIZ. Notice that the cross section for for-
ward scattering does not appear at all in the equations. Only the backscattering
and inelastic collisions are significant in shaping the distribution function.

The solution to Eqs. (8) in the asymptotic limit is

ZQ'e""Q.h

where B = @(ZQ; + Qh) /Q and u = NQ€/eE as before. Once again the
distribution approaches a Maxwellian at high energy. This time the copef-
ficient of u in the exponent goes to 1 as Qh/Q; increases just as in the exact
asymptotic solution. However, for small values of Qh/Q‘e, the approximation

is not as good as P1, This is because of the conflicting assumptions of isotropic

scattering in the one case and forward-backward scattering in the other. For

real gases at energies above 10 eV, the cross sections are more nearly des-

cribed by the latter assumption.

It would be useful to establish a criterion for terminating the angular expansion
which would result in a good approximation to the distribution function. If we
require that the term which is dropped in the series of Egs. (7) be less than

10% of those remaining, then the criterion for using the F, approximation is

fn+l (2n + 3)
—_— < 0,1 ni\en
(n+1)(2n - 1)

fn-l
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Using Table I, we see that Pl is a good approximation for Qh/Qe < 0, 1 while
at least seven terms must be retained for Qh/Qe = 0.3. With larger inelastic .

cross sections the criterion is never satisfied.

An alternative condition is to require that fl/f0 in the truncated expansion
be within 5% of the exact asymptotic value. This criterion is satisfied for

1 Pl at Qh/Qe = 0.1, for P2 at 0.3, and for P3 at 1. The error in a, which

goes as one over the electron temperature, is about equal to the error in
f1/f , which is proportional to the drift velocity of the high energy electrons,
o

Thus, the electron transport coefficients are much more accurately predicted

by the expansion method than are the angular distributions themselves.
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GLOSSARY

Subscript denoting attachment

Attachment Rate

Electron acceleration vector

Coefficients for Legendre expansion

Magnetic field vector

Electron velocity vector and magnitude

Heat capacity per unit mass

y-component of electron velocity

Molecular velocity vector and magnitude

Detachment rate

Anode -cathode separation

Cathode fall thickness

Normal cathode fall thickness

Absolute value of electronic charge

Electric field vector and magnitude

Electric field at cathode surface

Electron distribution function

Distribution of electrons moving with and against the electric field
Current distribution at anode: fA =f(e,y =d)e
Isotropic distribution function

Probability distribution at anode: F, = f(e,y = d) 1%

Magnitude of relative velocity
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h Subscript denoting inelastic collisions
h° Stagnation enthalpy
i Subscript denoting ionization
I Radiation intensity at cathode
j Total current density
je,j+ Electron and ion current density
I Normal current density
k Boltzmann's constant
K In-scattering operator
Ke In-scattering operator for elastic collisions
m Electron mass
m,,m_ Ion masses
M Mach number
M Molecular mass
n,n,
‘ n. Electron and ion number densities
| N Neutral number density
N* Neutral excited state density
) Pressure
K Reduced pressure
P‘:1 Discharge power density
| P‘z Legendre polynomials
q Heat flux
q, Heat flux at edge of cathode
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Total collision cross section
Rate of heat addition

Total attachment cross section
Total elastic cross section
Total inelastic cross section
Total ionization cross section

Total recombination cross section

Subscript denoting recombination
Position vector

Electron-ion recombination coefficient
Ion-ion recombination coefficient
Subscript denoting superelastic collisions
External ionization source term

Time

Thickness of cathode

Gas temperature

Adiabatic wall temperature
Temperature of back face of cathode
Temperature of front face of cathode
Free stream temperature

Flow velocities in x, y directions

Free stream velocity
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'\7’+, v Ion drift velocities
Ve Electron drift velocity !
Vc Cathode fall potential
E
@ Vn Normal cathode fall potential
w Electron drift velocity
' X Position coordinate in flow direction i
| y Position coordinate parallel to electric field |
Y;n Spherical harmonics
{ z Ionization rate
a Townsend ionization coefficient
v Polar scattering angle
Yoy Secondary electron emission coefficient
Vph Photoelectric efficiency
8 Boundary layer thickness
| ?7‘: Boundary layer displacement thickness
E °£ Thickness of laminar sublavyer
€ Total kinetic enersy
€ Electron mean energy {
€y Energy lost in inelastic collision |
e:i Energy lost in ionizing collision
: £ Permittivity of free space |
g Angle between electron velocity and K '
i
4
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Thermal conductivity of cathode

Thermal conductivity of gas

Coefficient of viscosity

Electron mobility

Kinematic viscosity

Ion collision frequency

Kinetic energy in field direction

Gas Density

Free stream gas density

Differential elastic cross section
Differential inelastic cross section
Recombination cross section

Shear stress

Characteristic times for gas heating in the cathode sheath
Electron potential energy or field potential
Work function of cathode material
Azimuthal angle for electron velocity
Viscous dissipation function

Azimuthal scattering angle

Solid angle for scattering
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